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Résumé

Carbon, an element discovered before history itself, is one of the most ubiquitous
and fourth most abundant element in the universe. A.L. Lavoisier proposed the
name carbon in 1789 from the Latin carbo meaning "charcoal." It plays an impor-
tant role in biological and technological applications because of the many ways it
forms chemical bonds, giving birth to a number of pure elemental allotropes such
as diamond, graphite, fullerenes, graphene, etc., each having distinct physical
properties. Diamond is an insulator and is a colourless, transparent, crystalline
solid and the hardest known material. Graphite is black and shiny but soft and
has the highest thermodynamic stability as compared to the other allotropes is a
good electrical conductor. A single layer of graphite, graphene, has phenomenal
electronic and optoelectronic applications due to which it is one of the most
studied two-dimensional (2D) material. Optical and electronic properties differ
due to confinement of electrons and in the case of 2D materials, also due to the
absence of interlayer interactions. These play an important role in determining
band structure. Graphene has zero band gap and is a semi-metal. This limits its
usefulness in electronic applications which require a finite bandgap. The need to
introduce a tunable band gap has brought many other 2D materials into the lime
light. Among these, hexagonal boron nitride (h-BN) is an insulator with a band
gap exceeding 5eV, and the family of transition-metal dichalcogenides (TMDs)
includes several semiconductors with bandgaps ranging from 0.4eV to 3eV.

Boron and nitrogen have masses close to that of carbon and boron-boron,
nitrogen-nitrogen bonds are weaker than the carbon-nitrogen, carbon-boron
bonds making it relatively easy to dope boron and nitrogen into the lattice of
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Résumé

graphene. These doped materials are perfect candidates for bandgap engineering.
Layered materials, i.e., stacking of such single layers to form heterostructures

have physical properties which are unique to the number of layers. For example,
bi-layer graphene can be used as a tunable band gap semiconductor. Graphene-h-
boron nitride heterostructures are promising candidates for solid states devices.

Organic-Inorganic hybrid perovskites, unlike layered materials, do not have
a simple physical mixture. Their inorganic and organic components mix at the
microscopic limit and hence have traits which are not typical of either organic nor
inorganic materials. Organic-Inorganic hybrid perovskites, which when made
into atomically thin 2D sheets, have also proved to be excellent semiconductor
materials for photovoltaic applications.

Figure 1: A schematic figure of all the materials
studied in this thesis.

The materials studied in the thesis are
shown in Fig. 1. The thesis embodies the
work carried out by me over the last five
years. In order to understand the electronic,
magnetic and thermal properties of these
materials, ab-initio computational calcu-
lations using Density Functional Theory
were carried out. Electrical (thermal) trans-
port properties are then calculated from the electronic bandstructure (phonon
dispersion) by solving the Boltzmann transport equations.
The thesis is organized in seven chapters as as follows;

Chapter 1: Introduction

Chapter 1 presents a brief introduction to two-dimensional materials. The basic
concepts, the current status of the subject, and the fascinating applications of
these materials in basic and applied science are briefly discussed, thus providing
the motivation for the work carried out in the subsequent chapters. We also
review some of the experimental procedures in producing and synthesizing these
nanomaterials.
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Chapter 2: Theoretical Framework

Chapter 2 provides detail discussions on Density functional theory, Density func-
tional perturbation theory, Boltzmann transport theory for electrons and phonons,
Molecular dynamics, Regular solution model and Monte Carlo simulation used
in the theoretical and computational investigations of the transport, electrical and
thermal properties of the materials taken up in the present study.

Chapter 3: Thermoelectric transport properties of monolayer
(MLG) and bilayer graphene (BLG)

Chapter 3 presents a discussion on the thermal and electronic properties of
monolayer and bilayer graphene. The computational details used by us are
mentioned in the chapter. The electrical properties studied are electrical- conduc-
tivity, resistivity, mobility, Seebeck coefficient and the power factor. Properties
due to phonons which have been considered are phonon dispersion, Grüneisen
parameters and the lattice thermal conductivity. We device a method to enchance
the figure of merit by doping graphene with one and two dimers of boron nitride.
Results from this Chapter have been published in
(i) First-principles study of the electrical and lattice thermal transport in mono-
layer and bilayer graphene (Phys. Rev. B 95, 085435 (2017))
(ii) Enhancement of thermoelectric figure-of-merit of Graphene upon BN-doping
and sample length reduction.(Manuscript submitted)

Chapter 4: First-principles calculations of lattice thermal
conductivity of multi-layered hexagonal boron nitride and
comparison to experiments

Chapter 4 calculates the mode, length and temperature dependence lattice thermal
conductivity using two methods, the Callaway-Klemens method and a real space
super cell iterative method. The materials studied in this chapter are single-, bi-,
multi- layered hexagonal boron nitride and bulk boron nitride.
Results from this Chapter have been published in
(i) Length-dependent lattice thermal conductivity of single-layer and multilayer
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hexagonal boron nitride: A first-principles study using the Callaway-Klemens
and real-space supercell methods (Phys. Rev. B 96, 205422 (2017))

Chapter 5: Thermoelectric transport properties of
graphene/boron-nitride/graphene heterostructure nanomaterials

Chapter 5 deals with the transport properties of graphene/boron-nitride layered
heterostructures. The materials examined here are single, bi- and 5 - layered
hexagonal boron nitride and Graphene-h-BN heterostructures,viz, three-,four-
and five- layered boron nitride sandwiched between graphene layers. The lattice
thermal conductivity for each system was calculated using molecular dynamic
simulations. We also calculated the electrical transport properties of Graphene-
h-BN heterostructures. Finally, combining the electrical transport properties
along with lattice thermal conductivity, we calculated the figure of merit of
Graphene-h-BN heterostructures.
Results from this Chapter have been published in
(i) Thermoelectric transport in graphene/h-BN/graphene heterostructures: A
computational study (Physica E 81, 96 (2016))

Chapter 6: Thermodynamic, Electronic Structure and resistivity of
Hybrid Hexagonal C2x(BN)1−x Two-dimensional Nanomaterial

In chapter 6, we study the electronic structure, thermodynamic properties and
resistivity of hybrid hexagonal C2x(BN)1−x two dimensional nanomaterials. The
electron bandstructures are examined by varying the carbon concentration, x,
for different interfaces between graphene and h-BN, viz, zigzag, armchair and
mixture of both zigzag and armchair interfaces. The thermodynamic properties
were calculated using two methods, the mean free approach or regular solution
model and classical Monte Carlo method. The goal was to uncover the role of
the interface geometry formed between the interfaces. We extended our studies
by reducing the dimensionality, i.e., studied the thermodynamic properties of
nanoribbons. Lastly, using the Boltzmann transport theories on band electrons,
we calculated the electrical resistivity of hexagonal C2x(BN)1−x.
Results from this Chapter have been published in
(i) Electronic structure, phase stability and resistivity of hybrid hexagonal
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Cx(BN)1−x two-dimensional nanomaterial: A first-principles study (Physica E,
69, 138 (2015))
(ii) Influence of interface geometry on phase stability and bandgap engineering
in boron nitride substituted graphene: A combined first-principles and Monte
Carlo study (Journal of Alloys and Compounds 708, 437 (2017))

Chapter 7: Conclusion and Outlook

The main results of our work are summarized in this Chapter. Further, we discuss
the future scope of our present formalisms.
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Chapter 1

Introduction

"What could we do with layered structures with just the right layers?", asked
Richard Feynman prophetically in his famous lecture, There’s Plenty of Room at
the Bottom, at an American Physical Society meeting at Caltech on December 29,
1959 [32]. Even though he made no formal contribution to the field, Feynman’s
talk has been credited with having given the impetus to the study of nanomaterials
and nanotechnology. The past several years have seen amazing development that
has brought us close to answering that question.

1.1 What are 2D materials?

Nanomaterials are materials with at least one dimension in the nanometer scale.
If only one dimension is restricted, we have atomically thin planar crystalline
materials, termed as two-dimensional (2D) materials or single layer materials.
If two dimensions are limited in size, we will have nanowires or 1D materials.
If all dimensions are in the range of a few nanometers we usually talk of 0D
materials.

2D materials are largely classified as either 2D allotropes of different ele-
ments and compounds, normally found having two or more covalently bonding
elements. A beautiful example made popular by a couple of Nobel Prizes to
their discoverers [33, 34, 35, 36, 37] is the family of sp2 carbon materials, where
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Chapter 1 1.1. What are 2D materials?

0D fullerenes, 1D nanotubes, 2D graphene and 3D graphite exhibit very differ-
ent (See Fig. 1.1)properties. The 2D materials consisting of a single type of
atom typically bear the ’-ene’ suffix in their names; for eg., graphene is named
after graphite "+ene", Silicene is the combination of silicon "+ene", Germanene

Figure 1.1: Mother of all graphitic form.
Graphene is a 2D material for carbon materi-
als of all dimensionality. It can be wrapped up
into 0D fullerenes, rolled into 1D nanotubes
or stacked into 3D graphite. Figure adapted
from Ref. [1].

is germanium "+ene" and so on. In 1962, the
term Graphene was termed by Hanns-Peter
Boehm et al. who fabricated and observed
single-layer carbon foils [38].

Materials consisting of compounds gener-
ally have the "-ane" or "-ide" suffixes. An
example is Hexagonal boron nitride. At the
nanometer scale one of the most essential pa-
rameter that defines the properties of the ma-
terial is its dimensionality. Optical, electronic
and thermal properties differ due to confine-
ment of electrons and in the case of 2D materi-
als, also due to the absence of interlayer inter-

actions. These play an important role in determining band structure. Changes in
mechanical and chemical properties are mainly due to geometry effects and to
the high (even infinite in the thinnest materials) surface-bulk ratio [39, 40].

Following the seminal paper by Novoselov and Geim [41], graphene has
become one of the most studied 2D material because of its exceptional electronic
and optoelectronic applications [42]. It is one of the most attractive 2D material
due to its uncommon band structure and phenomenal high carrier mobilities. It
has thus created an immense interest in the condensed matter community and
in the media since its isolation in 2004. Pristine graphene, though extremely
interesting, suffers from a draw back; it is a zero band gap semi-metal, which
makes it uninteresting from a device application point of view. Development of
graphene-based electronics depends on our ability to open a tunable band gap.
Fortunately, there are a large number of 2D materials that cover the entire range
of electronic properties shown in Fig. 1.2. Hence large efforts have been made to
functionalize graphene by engineering a controllable bandgap. Hexagonal Boron
Nitride (h-BN) was theoretically predicted to produce a bandgap in graphene
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Chapter 1 1.1. What are 2D materials?

when it was deposited on graphene[43]. The family of single-layered transition-

Figure 1.2: The 2D world of materials than stretch over the entire range of electronic properties. Schematic
diagrams of the cross sectional area of the materials are shown at the four corners. These materials include graphene
and its analogues, for eg., h-BN, the III-VI calcifications of semiconductors and transition-metal dichalcogenides.
Figure adapted from Ref. [2]

metal dichalcogenides (TMDs)- whose generalized formula is MX2, where M is
a transition metal of such as Mo, W, Ti, Zr, Hf, V, Nb, Hf, Fe, Co, Ni, Zn and
X is a chalcogen such as S, Se, or Te include several semiconductors with band
gaps in the range ∼ 0.5 eV to 3 eV.

Figure 1.3: A process flow chart of Graphene synthesis. Figure
adapted from Ref. [3].

There are essentially two ap-
proaches to synthesis 2D materi-
als: The top-down approach and
the bottom-up approach (see Fig.
1.3). The top-down approach in-
volves the peeling off say a layer
of graphene from the already existing structure in the form of graphite. Graphite
is composed of layers of graphene. Individual graphene sheets were first exfoli-
ated from graphite in 2004 by Andre Geim and Konstantine Novoselov isolated
graphene in 2004 [41]. They stuck scotch tape to a block of highly oriented
pyrolytic graphite and peeled off many layers. A second piece of tape was used
to peel a few more graphite layers off of the first piece of tape. This process
was continued about a dozen times. When the last piece of tape was stuck to
a flat silicon wafer and peeled it away, some of the layers remaining on the
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wafer were a single atom thick. This method is therefore also known as "scotch
tape" method. Examples of this approach are micro-mechanical cleavage or
exfoliation, chemical exfoliation, electrolytic exfoliation, and thermal exfoliation
and reduction. In the bottom-up approach, graphene layer is deposited on a
substrate using hydrocarbon as the source of carbon. Examples of this approach
are chemical vapour deposition (CVD), chemical conversion of CO2, unzipping
of carbon nanotube, arc discharge, self assembly of surface surfactant, epitaxial
growth on SiC and solvo-thermal methods.

1.2 2D materials from layered Materials

In layered materials, the planar structures are held together by strong in-plane
covalent bonds, whereas the layers are coupled by the relatively weaker out-of-
plane van der Waals forces. Such layered materials are therefore also referred to
as van der Waals materials. Each layer in these materials can be separated easily
with little or no defects since it only involves breaking the van der Waals bonds.
For example, by exfoliating bulk graphite, layers of graphene are constructed.

It is not only graphite that responds to the idea of pulling out a layer from a
three dimensional material. Many such 2D nanomaterials have been discovered
during the last few years. Hexagonal boron nitride and TMDs are examples of
such materials. However, each TMD monolayer is three atom thick consisting
of a transition metal layer sandwiched between two chalcogen layers. Layered
materials are atomically very stable and hence can be relocated to any substrate
with relative ease.

1.3 Van der Waal structures

Figure 1.4: Building van der
Waals heterostructures. Figure
adapted from Ref. [4]

The expanding range of van de Waals materials has
turned the attention of the material science community
to the question of designing new materials by stacking
two or more 2D crystals of dissimilar materials. Such
designer materials would have strong covalent bonds to
provide in-plane stability of the 2D crystals, whereas
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the stacks would be held together by the relatively weak the van-der-Waals-
like forces. The resulting stack, called van der Waals heterostructure (vdWH)
(see Fig. 1.4) exhibits absolutely novel physics besides opening a new era in
integrated flexible technology.

1.4 Motivation

1.4.1 Basic physics in 2D

Reduced dimensions confines charge and heat transport to a plane. This leads
to quantum confinement and a decrease in the bulk dielectric screening which
results in exceptional electrical, optical, mechanical and magnetic properties. In

Figure 1.5: Lattice structure and schematic band structures at the corners of the first Brillouin zone for
(a)monolayer graphene, (b) bilayer graphene, (c) hexagonal boron nitride, and (d) the transition-metal dichalco-
genides (TMDs). The dashed lines in the lattice diagrams indicate unit cells. Because of their inversion symmetry,
monolayer and bilayer graphene have no bandgap. Due to spin–orbit coupling, the TMDs’ valence band is split
into two spin-polarized bands, marked by the red and blue arrows. Figure adapted from Ref. [2].

graphene’s band structure, the valence and conduction bands meet in conical
valleys at two of the high-symmetry points, conventionally labelled K and K

′
,

in the Brillouin zone, as shown in Fig. 1.5 a. Thus the valence- and conduction
band energies are linear functions of momentum. This property implies that the
speed of electrons in graphene is a constant, much like the speed of photons,
though the effective speed is 300 times less than the speed of light in vacuum.
The quantum mechanical description can thus be simplified by introducing quasi-
relativistic spin-1

2 particles with a vanishingly small mass and governed by Dirac
equation and are therefore called Dirac Fermions (See Appendix A). Graphene’s
relativistic behaviour arises from the symmetry of the honeycomb lattice rather
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from the requirement of Lorentz invariance. This gives rise to novel phenomena,
such as the anomalous room-temperature quantum Hall effect [44, 45], and has
opened up a new category of "Fermi-Dirac" physics.

Fig. 1.5 b shows bilayer graphene which consists of two graphene layers stack
together to form a staggered honeycomb lattice. Its quasi-particles gain mass,
and the energy dispersion becomes parabolic. However, since the inversion
symmetry is maintained the energy at the K

′
and K is still degenerate thus

preventing an opening of a bandgap. This energy degeneracy can be lifted by
breaking the lattice’s inversion symmetry. In h-BN shown in Fig. 1.5 c, this is
achieved by replacing two carbon atoms in the graphene’s unit cell by boron
and nitrogen.This results in a large energy gap, making h-BN an extremely good
insulator and dielectric. A similar symmetry breaking takes place in TMDs (see
Fig. 1.5 d) giving rise to a family of semiconductors with a full bandgap range,
from visible to infrared.

1.4.2 Applications

As shown in Fig. 1.2, since ultrathin 2D nanomaterials encompasses a complete
range of electronic properties they can be integrated in a variety of applications
in electronics/optoelectronics, catalysis, energy storage and conversion, sensors,
biomedicine, etc.

2D monolayers which are semiconducting in nature, having direct band gaps,
are suitable for producing and detecting photons at wave lengths which are
function of the band gaps. They can be tuned through quantum confinement,
which are achieved by changing the number of layers. Synthesis of various 2D
circuit elements into 2D memory devices can be an interesting way to produce
low-power, flexible electronics. It is encouraging to device 2D logic circuits
from a starting layered material sheet, for eg., graphene, which can be tuned
from a semi-metal into a semiconductor. This can be done either by doping with
other elements and thus lessen the need for external contacts. Integrating 2D
memory layers, logic circuits with 2D sensors, optics, and components needed
for energy storage can be used to design energy-effective, ultrathin solid state
devices.

Due to the latest breakthroughs in experiments, graphene monolayers can be
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grown on metallic as well as non metallic substrates. Many other 2D materials,
for eg., MoS2 or in general TMDs, can also be synthesized by CVD methods. De-
velopment in 2D materials has been backed by developments in characterization
techniques, such as Raman spectroscopy to understand how layered materials are
piled up together and to establish the number of layers in a system. It is possible
to avoid vapor-phase synthesis by exfoliating materials having layers which are
atomically stable, for eg., graphene, h-BN, TMDs, etc. to obtain mono- and few
layers which have useful application for energy storage. However, for atomically
unstable materials that do not have corresponding layered materials, such as
silicene, stanene, phosphorene, germanene and borane, which are atomically
stable only in particular isomeric structures, still remains a challenge to grow.

1.4.3 Review of the materials studied in the thesis

1.4.3.1 Mono- and Multi- layer graphene

There are six electrons in the atomic orbitals of carbon, 1s2 2s2 2p2. However,
the 1s electrons do not contribute to the chemical bonds as they are typically
inert. The 2s, 2px and 2py orbitals in graphene hybridize to shape the new planar
orbitals called sp2 orbitals. These orbitals are along lines making an angle of
120◦ with each other, which are responsible for the hexagonal lattice structure
and contain one electron each.

A single layer of graphite was first studied theoretically in 1947, by Philip
Russel Wallace [46]. Using the tight binding approximation he showed the
unusual semimetallic behavior in this material. As discussed earlier the con-
duction and the valence bands are not separated by a gap, and do not overlap
either. In fact they intersect in two inequivalent points, called Dirac points in
the first Brillouin zone. The electron dispersion in the vicinity of the Dirac
points is conical and not parabolic, as in most semiconductors. At that time,
the thought of a purely 2D structure was not reality and Wallace’s studies of
graphene served him as a starting point to study graphite, an important material
for nuclear reactors in the post–World War II era. However, in 2004, Andre
Geim’s group, at Manchester University [41] produced a single layer of graphite
using micromechanical exfoliation (Microexfoliation). Further, they studied
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Figure 1.6: Experimentally measured electron transport coefficients of MLG and BLG. (a) The electrical conduc-
tivity of graphene as a function of charge carriers before (blue) and after (red) annealing the sample. (b) The
electrical conductivity of bilayer graphene at various temperature as a function of gate voltage. (c) The resistivity
of graphene as a function of charge carriers before (top) and after (below)annealing the sample. (d) The mobility
of graphene as a function charge carriers. (e) The Bloch-Grüneisen behavior of graphene at various gate voltages.
(f) The Seebeck coefficients of graphene as a function of gate voltage at various temperatures. Figures adapted
from references [5, 6, 7, 8]

the electric field effect and carried out a series of successful experiments on
the produced graphene, thus dispelling the earlier hypothesis [36, 37]. Andre
Geim and Konstantine Novoselov were awarded the Nobel Prize in Physics in
2010 "for groundbreaking experiments regarding the two dimensional material
graphene".

It has been shown that the electronic structure of graphene rapidly evolves
with the number of layers, approaching the 3D limit of graphite at 10 layers
[43]. Moreover, only graphene and, to a good approximation, its bilayer has
simple electronic spectra: they are both zero-gap semiconductors with one
type of electron and one type of hole. For three or more layers, the spectra
become increasingly complicated: several charge carriers appear [47, 45] and
the conduction and valence bands start to overlap [43, 47]. This allows single-,
double- and a few - (3 to <10) layer graphene to be distinguished a three different
types of 2D crystals (“graphenes”). Thicker structures should be considered,
to all intents and purposes, as thin films of graphite [45]. The strength and
specificity of its covalent bonds makes graphene one of the strongest materials
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(tensile strength of about ∼ 130 gigapascals) in nature, albeit one of the soft-
est (0.77 mg/m2(∼ 1000 times lighter than paper)), with literally no extrinsic
substitutional impurities, leading to the highest electronic mobilities among
metals and semiconductors. It has extraordinary thermal, mechanical, electrical
and many other properties. The most intriguing aspects of graphene are its
unique electronic properties such as ballistic transport, longest free path (∼
300 µm) and high electron mobility (∼ 20× 103cm2/Vs.) at room temperature,
quantum Hall effects and massless Dirac ferminons [45]. Therefore, graphene
is being considered for a plethora of applications that range from conducting
paints, and flexible displays, to high speed electronics. In fact, it can be said
that perhaps, not since the invention of the transistor out of germanium in
the 1950’s, a material has had this kind of impact in the solid state literature.

Figure 1.7: (a) Top and (b) side view of the
crystal structure of bilayer graphene. Atoms
A1 and B1 on the lower layer are shown as
white and black circles, A2, B2 on the upper
layer are black and grey, respectively. The
shaded rhombus in (a) indicates the conven-
tional unit cell. Figure reproduced from [9].

Bilayer graphene consists of two monolayers,
with four atoms in the unit cell, labelled A1,
B1 on the lower layer and A2, B2 on the
upper layer (see Fig. 1.7). The layers are
arranged such that atom B1 from the lower
layer is directly below atom A2 from the up-
per layer. The other two atoms, A1 and B2,
do not have a counterpart on the other layer
that is directly above or below them [9]. This
stacking type is known as the Bernal-stacked
or AB-stacked and is the most thermodynam-
ically stable configuration in comparison to
the other types of stacking, the AA-stacked
or twisted graphene. Many of the properties
of bilayer graphene are comparable to that of
monolayer graphene such as exceptional elec-
trical conductivity [48]; tuning the electrical

properties by doping or altering the carrier density through gating [41, 49, 50],
high room temperature lattice thermal conductivity [51, 52], Young’s modulus
for bilayer graphene is about 0.8 TPa [53, 54], the transparency is about 95%
with transmittance of white light [55], impermeable to gases [56] and lastly,
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the capability of being chemically fabricated [57]. Therefore, just at monolayer
graphene, bilayer graphene has promising application in areas such as transparent
and flexible electrodes for touch screen display [58], high-frequency transistors
[59], thermoelectric devices [60], photo-detectors [61], energy storage devices
like super-capacitors [62, 63] and composite materials [64, 65]. However, bi-
layer graphene has characteristics that make it unique as compared to monolayer
graphene. More specifically, the low-energy band structure is distinct. Unlike
monolayer graphene having a linear low-energy dispersion, bilayer graphene
has a quadratic electronic energy dispersion and hence bilayer graphene has
chiral quasiparticles [49, 66] instead of massless one as in the case of monolayer
graphene.

Bilayer graphene is the thinnest possible limit for an intercalated material
[62, 63] since it constitutes only two layers of monolayer graphene. Bilayer
graphene can be used as a tunable band gap semiconductor. One can focus
on each of the layers separately making way to new characteristics in bilayer
graphene which include the potential to control the energy band gap up to ∼ 300

meV by doping or gating [66, 67, 50]. Moreover, by electrostatic confinement
with gates, the band gap in bilayer graphene has been used to build devices,
constrictions and dots [68]. When there is the need to use more material for
increased strength [64, 65] or optical signatures [69], bilayer or multilayer
graphene can be more favorable as compared to monolayer graphene. The
fundamentals to electronic transport properties of graphene is to understand
the mechanism which causes the scattering of its charge carriers. [70, 71].
Scattering might result from the following reasons, (i) due to charged impurities
from the bottom substrate or the impurities in the graphene sheets [72, 70, 71],
(ii) wrinkles in the graphene sheet [6], (iii) phonons in graphene [73, 74, 75, 76],
(iv) puddle formation of hole and electron at low carrier density [77, 78].

Bolotin et. al. [5] have found a decline carrier scattering for suspended
graphene. They reported that, after an annealing treatment to get rid of the
residual impurities, the graphene sample mobility surpassed 2×105cm2/Vs, an
order of magnitude enhancement as compared to graphene devices on a sub-
strate [79]. This allowed them to probe transport regimes which are now made
accessible due to remarkable cleanliness of suspended graphene. They show that
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the resistivity is greatly dependent on temperature. For eg., at low temperature,
T ∼ 5K, the electron mobility is ∼ 1.7× 105cm2/Vs which is nearly ballistic.
For larger carrier densities, the resistivity increases with T having a linear depen-
dence above 50K suggesting that the carrier scattering is from acoustic phonons.

Figure 1.8: (a)Resistivity as a function of temperature for dif-
ferent charge carrier densities of graphene samples. (b) The
temperature dependent resistivity scales as T 4 in the low T

range to a linear T range for temperature larger than the Bloch-
Grüneisen temperature, ΘBG. Figure adapter from reference
[10]

The highest measured mobility
was also recorded by them for
their most pure sample having
a value of 1.2 × 105cm2/Vs at
T =240 K. The low temperature
regime electrical conductivity on
the suspended sample showed a
linear behavior of n before the an-
nealing treatment. This linearity
of electrical conductivity suggests
that the scattering is primarily due
to charge impurities A dozen of
graphene sample specimens were

investigated to measure the conductivity by Tan et.al. [7] with different levels of
disorder with mobility in the range from 1× 103cm2/Vs - 20× 103cm2/Vs.

They estimated that the impurity concentration showed values in the range
2×1011cm−2-15×1011cm−2. The conductivity of these specimens in the low
carrier density limit are linked to residual density effected by the inhomoge-
neous charge distribution in the graphene samples having values in the range
2e

2

h − 12e
2

h . Temperature dependence of electron transport were also done by
Morozov et. al. [6] for both mono- and bi- layer graphene and concluded that if
extrinsic disorders were eliminated, mobilities higher than 2× 105cm2/Vs are
achievable. The resistivity depends greatly on the electron-phonon scattering in
the material. For temperatures above the Debye temperature ΘD, the resistivity
varies linearly with temperature which reflects the classical behavior of phonons.
The bosonic behavior of phonons are seen below ΘD which results in a swift
decrease in resistivity, i.e., the temperature dependent resistivity is ρ ∼ T 5 for
a normal 3D conductor. However, for 2D systems, such as graphene, a new
characteristic temperature scale for the low-density electron-phonon scattering
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is define known as the Bloch-Grünesien (BG) regime. The BG temperature is
given ΘBG =

2vphkF
kB

< ΘD. Here vph and kF are the phonon group velocity
and Fermi momentum, respectively. It was theoretically predicted [73] and
experimentally observed [10] that in 2D systems the smooth transition from the
classical behavior to the rapidly decreasing regime will have the temperature
dependence as ρ ∼ T 4. Electrical conductivity and Seebeck coefficient were also
calculated for the first time by Zuev et. al. [8] using a microfabricated heating
system. These experimental works carried out by various groups [8, 10, 73, 6, 7]
on electron transport coefficients for MLG and BLG have motivated us to carry
out computational studies based on first-principles calculations.

1.4.3.2 Single- and multi- layer Hexagonal boron nitride (h-BN)

Bulk Hexagonal boron nitride (h-BN) has a layered crystal structure similar
to that of graphite, with equal numbers of boron and nitrogen atoms replacing
the carbon atoms in the hexagonal structure. Within each layer, the boron and
nitrogen atoms are bonded by highly covalent bonds, while these layers are held
together by the van der Waals force to form the bulk crystal. A single-layer
h-BN nanosheet is therefore commonly known as the "white graphene". It has a
very small lattice mismatch of about 1.7%, which is commonly regarded as a
prerequisite for the growth of defect free epitaxial heterostructures. h-BN has a
large optical phonon mode and belongs to the wide band gap class of insulators.
Besides its exotic opto-electrical properties it is mechanically robust (Young’s
modulus is approximately 270 Nm−1), thermal stability (at room temperature,
the thermal conductivity of h-BN is up to 400 Wm−1K−1, which is higher than
the majority of metals and ceramic materials) and chemical inertness [48]. It
is thus extensively studied for application in field effect transistors (FETs),
tunneling devices, deep UV emitters and detectors, photoelectric devices, and
nanofillers. Single and multilayer h-BN demonstrate a lower lattice thermal
conductivity as compared to the corresponding number of layers in graphene
and is therefore intriguing to study its length and temperature dependence lattice
thermal conductivity.
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1.4.3.3 Doped graphene and C2x(BN)1−x

A practical method to control the semiconducting properties of graphene is by
doping [14]. Experimental and theoretical studies on graphene doping show the
possibility of making p-type and n-type semiconducting graphene by substituting
C atoms with B and N atoms, respectively. Since the binding energies of B-B and
N-N bonds are weaker than that of C-N and C-B bonds, boron or nitrogen are
relatively easily doped into the lattice graphene. Also the atomic masses of these
dopants are closest to carbon, thus making them acceptable for carbon lattices to
adjust to, whilst at the same time significantly altering the electronic properties
of the host material because of the electron-rich and electron-deficient nature of
N and B atoms. Mukherjee et al. [80] have shown that doping graphene with
nitrogen, the Dirac point in the bandstructure of the doped material relocates
below the Fermi energy and creating a band gap at the high symmetric K-point.

Figure 1.9: Schematic diagrams demonstrating the correspondence
between the position of the HOMO-LUMO levels of dopants rela-
tive to the Fermi level of graphene pertaining n- and p-type doping.
Figure adapted from references [11]

However, when the graphene
is doped with boron, the
Dirac point moves above the
Fermi energy and a gap ap-
pears at the high symmetric
K point. Moreover, co-doping
both boron and nitrogen , the
energy band gap is appears be-
tween the conduction and va-
lence band, the Fermi level,
having the characteristic as a
narrow gap semiconductor. Strong charge transfer interactions with graphene are
due to atoms having electron withdrawing or donating functional groups. These
types of doping occur through the adsorbed dopant to graphene and vice versa.
The relative position of the density of states of the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the
dopant, and the Fermi level of graphene determines if the charge transfer will
occur.

When the HOMO of the dopant is above the Fermi level of graphene, charge
is transferred from the dopant to the graphene layer which results in n-type
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doping. However, charge transfer takes place from graphene to the dopant
resulting to p-type doping when the LUMO for the dopant is below the Fermi
level of graphene. n-type (p-type) doping makes the Dirac point shift below
(above) the Fermi level (See Fig. 1.9). The extent of charge transferred per
molecule, besides the accurate separation of the HOMO/LUMO levels of the
dopant with respect to the Dirac point, relies on the distance and orientation of
the adsorbate with respect to the graphene plane.

Figure 1.10: (a)Scaled resistance versus temperature for undoped and
boron nitrogen doped graphene. The resistance is seen to increase with
increasing temperature which shows a metallic behavior. The boron nitro-
gen doped samples show semiconducting behavior. (b-d) The logarithmic
of resistivity versus the inverse of temperature in the temperature range 50-
400K for various boron and nitrogen concentrations. Figure adapted from
reference [12].

The response to phys-
ical properties of materi-
als due to impurities have
captivated material scien-
tists for decades. Thus
the capability to produce
structural defects into 2D
layered materials such as
graphene through doping,
such as boron and nitro-
gen, has unlocked many
possibilities to understand
the aftermath of disorder
at the atomic level. The

possibility to regulate the electronic properties of single layers CBN simply by
varying its constituent concentration of B and N will bring about a boost in
obtaining materials with tunable electronic properties which will be suitable
from solid state devices.

Hexagonal Boron Nitride (h-BN) is insulating having a band-gap of nearly 5-
eV and a lattice constant which is very close to that of Graphene. Therefore it can
be easily synthesized in the form of monolayer flakes [81, 82], making it possible
to provide a wide range of band-gap materials depending on the degree of mixing
[83]. A great deal of effort has been made to synthesize hexagonal CBN (h-CBN)
monolayer and multilayer nanomaterials with varying concentration of C/BN
[84, 14, 48, 85] since such materials are of great importance in optoelectronic
devices. Synthesis of laterally grown in-plane heterostructures of Graphene and
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Figure 1.11: (a)Schematic description of the fabrication for in-plane graphene/h-BN heterostructures. (b)Scanning
electron microscopic images, optical images and Raman mapping of various boron nitride patterns on graphene.
(c)Atomic High-resolution transmission electron microscopy (HRTEM) images of h-BNC film. Figures adapted
from References [13, 14]

h-BN, in which these two materials are seamlessly integrated lithographically
with varying domain sizes have been experimentally reported by Liu et. al. [13].

Their method can make periodic arrangements of domains having sizes rang-
ing from tens of nanometres to millimetres. (See Fig. 1.11). The derived atomic
graphene/h-BN layers can be exfoliated from the growth substrate and relo-
cated to various platforms such as flexible substrates. Using Chemical Vapour
Deposition (CVD) techniques, Panchakarla et. al. [84] and Ci et. al. [14],
initially synthesized h-CBN by carefully controlling the concentration of C or
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BN. Samples of all h-CBN exhibited semiconducting behavior having band-gap
between few meV to nearly an eV, a fact verified by first-principles calculations
[12]. Various groups have studied the formation of band-gaps in graphene when
doped by boron and nitrogen [86, 87, 88, 89, 90, 91]. Synthesis of these astound-
ing laterally grown hybrid C2x(BN)1−x two-dimensional heterostructures with
different shapes such as circular dots, stripes patterns etc. of varying widths and
sizes (See Fig. 1.11) has made the possibility of device applications of such
materials a reality. Using different experimental conditions by other various
groups [92, 93, 94] have also synthesised similar hybrid h-CBN heterostruc-
tures. Muchharla [12] et. al. measured the temperature dependent resistivity to
demonstrate the effect of inserting boron and nitrogen to the electronic properties
of the graphene lattice for three CBN having different concentrations. They
plotted the logarithmic resistivity versus temperature inverse, which correlates
to the thermally activated transport mechanism in the given temperature range,
resulting in a linear behavior (See Fig. 1.10).

1.4.3.4 Graphene and h-BN heterostructures

Enormous class of 2D van der Waals layered materials have been investigated
ever since graphene was made available by the scotch tape technique. What
makes 2D van der Waals (vdW) materials more interesting is that the well-
established physics and chemistry of the 3D bulk materials are frequently unim-
portant, resulting in fascinating characteristics in 2D vdW systems. By the
ways of simple exfoliation methods, vast quantum mechanical devices have
been achieved for fundamental physics research and technological applica-
tion by assembling heterostructure of these materials in the vertical directions.
Essentially, the interactions between adjacent layers of the 2D layer materi-
als are described by the vdW forces due to the saturated chemical bonds on
the their surface. Therefore, vdW interactions allow, without direct chemical
bonding, the synthesis of highly disparate materials without the constraints of
crystal lattice matching [95]. Multilayers are defined by stacking single layer
of a material on top of each other. Since single and multi layer hexagonal
boron nitride (h-BN) have a similar lattice constant, unit cell mass and Van der
Waals type bonding to that of single and multi layer graphene, one can stack
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h-BN along graphene, making h-BN a perfect substrate for graphene electron-
ics. These heterostructures are atomically stable and have properties which
are unique to the number of layers. For example, as mentioned previously, bi-
layer graphene can be used as a tunable band gap semiconductor. 2D G/h-BN
heterobarriers have been proposed and investigated and hence graphene and
h-BN layered architectures are potential candidates for device applications with
novel transport properties. The comprehensive collection of 2D layer mate-
rials with preferable material properties gives rise to promising possibilities
of heterogeneous synthesis at the atomic limit, developing innovative hybrid
structures that demonstrate fundamental physics and allow distinct functionality.

Figure 1.12: Schematic figure of the optical image and measure-
ment setup of graphene/h-BN/graphene heterostructure device. Fig-
ure adapted from reference [15].

2D nanomaterial offer possi-
bilities in exhibiting improved
thermoelectric figure-of-merit
when constructed in the form
of compound semiconduc-
tors, semiconductor multilay-
ers, and superstructures and
hence been a subject of inter-

est in recent years [96, 97, 98]. Appealing range of capabilities that extend
beyond lateral graphene devices are shown in the electron transport in the
cross-plane direction of layered material heterostructures. For ex., graphene
based heterjunction devices such as graphene/silicon and graphene/gallium ar-
senide diodes have shown improved behavior and gate-tunable photovoltaic
responses [15]. Hybrid atomic layers with fascinating electronic applications
can be deviced, if accurate two-dimensional domains of graphene and h-BN
can be smoothly joined together [85]. Combining heterostructure devices with
graphene with other 2D material like h-BN or MoS2 have shown intriguing elec-
tron tunnelling transport, light absorption and negative differential conductance.
Atomically layered graphene and h-BN systems are promising candidates for
solid state device applications. Graphene transistors have been suggested and
inspected from a theoretical point of view [99] which were initially motivated
by the experimental success of graphene-boron-nitride lateral hecterostructures
[100]. Vertical heterobarrier graphene based transistors, based on simulation
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studies, have also been proposed by Sciambi et al. and Mehr et al. [101, 102].
Zhong [103]et al. have addressed theoretically the quantum transport in tri-
layers G/h-BN/G and h-BN/G/h-BN and predicted a metal-like conduction in the
low-field regime. Using non-equilibrium Green’s function method for different
thickness of h-BN and graphene domains, thermoelectric transport in G/h-BN
nanoribbons have been considered [104]. Using molecular dynamic simula-
tion, thermal transport was investigated by Kinaci et al. [105]. A prototype
field-effect tunnelling transistor with atomically thin boron nitride behaving as
a vertical transport barrier was reported by Britnell et al. [106]. Aside from
electron transport, in graphene based heterojunction devices, the heat dissipation
is found to be influenced by vertical heat transfer [107, 108]. Recently the
thermoelectric transport measurement across the G/h-BN/G heterostructure with
different number of layers of h-BN layers [15]. Chen et al. [15] observed a
Seebeck coefficient of -99.3 µV/K and power factor of 1.51×10−15W/K2 for
the G/h-BN/G heterostructure device based on the thermoelectric voltage and
temperature gradient. However graphene is gapless and hence it is not easy to
modulate the electron current, which is an essential feature in electronics. When
graphene is doped with boron i.e. hole doping, the Dirac point in the graphene
band structure moves above the Fermi level and a gap appears, while for electron
doping i.e. graphene doped with nitrogen, the point moves below the Fermi level.
For the doped graphene to be a semiconductor, the Fermi level must lie between
the conduction and valence band. This can be achieved by co-doping graphene
with both B and N.
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Chapter 2

Theoretical Framework

2.1 Density functional theory 1

2.1.1 Introduction

Problems which do not have an analytical solution, numerical methods using
computers are of vital importance. Computers have thus become an essential
part in the world of physical chemistry, condensed matter physics, material
science, molecular physics and solid state physics. The field of computational
physics attends to the determination of energies, charge density distributions and
electronic structure, principally with the ground state, of many-body systems.
The aim is to get the vision of the molecular processes as seen in experiments as
well as to predict them.

Hartree and Fock were the first to deal with the complicated non analytical
many-body Schrödinger equation. They derived a wave-function based, self-
consistent equations allowing an iterative calculation of energies. A major hurdle
using the Hartree-Fock method is the high cost of computation time. It emerges
from the dependency of the many-body wave function of the 3N spatial variables.

Lowering the computational cost of molecular and atomic calculations can
be achieved by using a less complex base variable. The ground work for such

1This theory has been implemented in Chapter 3, 4,5 and 6
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an approach was provided by Hohenberg and Kohn in 1964. They proved that a
variable only depending on three spatial, the electron density, contains all the
information about the ground state properties of the many-body system. This
marked the beginning of density of functional theory (DFT).

Density functional theory (DFT) is a powerful, quantum mechanical mod-
elling method for computing the quantum states of atoms, molecules and solids.
DFT rests on two mathematical theorems proved by Hohenberg-Kohn (H-K).
The first H-K theorem shows that for a many electron system, the ground state
energy from Schrödinger equation is a unique functional of the electron density
which depends only on 3 spatial coordinates. The second H-K theorem proves
that the true ground state electron density minimizes the energy functional cor-
responding to the solution of the Schrödinger equation. In 1998 Kohn won the
Nobel prize "for his Development of the density-functional theory". [109, 110]
Kohn and Sham, in 1965, derived iteratively solvable, self-consistent equations
which allowed the use of the only theoretical concept then applied by Hohenberg
and Kohn in actual computer simulations [111]. Since the electron density is a
function of only three spatial coordinates compared to the multi-electron wave
function, the computation times of DFT based calculations are significantly
lower.

Electronic structure calculations using the density functional theory became
popular in condensed matter physics and material science in the 1990s. Today,
it is by far the most universally used method to obtain electronic structure cal-
culations. By having the basic structural information, one can determine the
properties of a condensed matter system without any flexible parameter and
hence it is referred to as first-principles or ab initio method. Other than conven-
tional experimental methods, density functional theory serves as an alternative
to examine condensed matter systems. Density functional theory is therefore
a powerful tool for theorists as well as experimentalists to interpret the charac-
teristic properties of materials and make distinct prediction of experimentally
observable developments in real materials and to design new solid state devices
and materials.

In the Kohn-Sham method, the original interacting system with the true
potential is mapped onto a fabricated non-interacting system where the electrons
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are influenced by an effective Kohn-Sham single-particle potential. Therefore,
the Kohn-Sham approach is to substitute the initial many-body problem by
an auxiliary independent system. Generally numerical codes are based on the
Kohn-Sham approach to the primitive density functional theory. In the effective
Khon-Sham single particle potential, the many body effects are approximated
by the exchange-correlation functional. Extensively used exchange-correlation
fucntionals are the local density approximation (LDA) and generalized gradient
approximation (GGA). LDA originates from exchange-correlation functional
of a homogeneous electron gas by a point by point mapping, i.e., the LDA
depends entirely on the value of the electronic density at each point in space.
While GGA is a generalization of LDA by being inclusive of contributions from
electron density gradient. The area of electronic structure calculations is quickly
developing in basic theory, new algorithms, and computational methods and
power.

2.1.2 Many-Body System and Born-Oppenheimer
Approximation

The many-body Hamiltonian (Htot) of a condensed matter system consisting of
nuclei and electrons can be expressed as,

Htot = −
∑
I
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−
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ZIe
2

|RI − ri|
. (2.1)

The dummy variable i and j corresponds to the electrons and I and J to the nuclei.
RI and MI are the positions and masses of the nuclei. Similarly, ri and me are
the positions and masses for the electrons. ZI is the atomic number of nucleus
I. The first and second term are the kinetic energies of the nuclei and electron,
respectively. The third term, fourth and fifth term are the potential energies of the
nucleus-nucleus, electron-electron and electron-nucleus interaction, respectively.
The time-independent Schrödinger equation is expressed as,

HtotΨ(RI , ri) = EΨ(RI , ri) (2.2)
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Here, Ψ(RI , ri) is the total wavefunction of the system. Everything about the
system, in principle, can be known by solving the Schrödinger equation Eq. 2.2.
It is, however, a nearly impossible task to solve Eq. 2.2 in practice. The nuclei
being much heavier than the electrons, the nuclei moves extremely slower (∼ two
order of magitude slower, since the mass of a proton is ∼ 1836 times the mass of
an electron) than the electrons. Therefore, one can now separate the movement
of nuclei and electron. This is the Born Oppenheimer (BO) approximation
[112] where the electronic and nuclear motions in an atom, molecule or solid is
treated independently, i.e. the total wavefunction is factorized into an electron
wavefunction and a nuclear wave function. Assuming the nuclei to be stationary,
the total wave function can now be, expressed as,

Ψ(RI , ri) = Θ(RI)φ(RI , ri) (2.3)

Θ(RI) describes the wavefunction component of the nuclei and φ(RI , ri) that of
the electron. The electron wavefunction depends parametrically on the position
of the nuclei and satisfies the Schrödinger equation,

Heφ(RI , ri) = V (RI , ri)(RI , ri) (2.4)

which represents a stationary eigenvalue problem for any given set of RI . Here
He, the electron Hamiltonian, is given by,

He = −
∑
I

~2

2me
∇2

ri +
1

2

∑
I,J
I 6=J

ZIZJe
2

|RI − RJ |

+
1

2

∑
i,j
i6=j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|RI − ri|
. (2.5)

The eigenvalues V (RI) determined from Eq. 2.4 are used as the operators of
potential energy in the equation determining the nuclear motion,[

−
∑
I

~2

2MI
∇2

RI + V (RI)

]
Θ(RI) = E

′
Θ(RI). (2.6)

Where E
′
are the eigenvalues of the nuclei Hamiltonian. The BO approximation

also called the adiabatic approximation, implies that the electrons are moving
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in a external potential formed by fixed nuclei. This is the origin of any DFT
calculation. Bohn and Huang extended the BO approximation [113] considering
non-adiabatic effects in the electronic Hamiltonian.

2.1.3 The electron density - A new variable

The electron density (n(r)) is a scalar quantity depending on three spatial vari-
ables and is the measure of the probability of occupying an infinitesimal element
of space at any given point. The electron density for N electron is obtained
from the normalized N -electron wavefunction. The wavefunctions are in itself a
function of 3N spatial variables. Conversely, the density also decides the wave-
function (along with a phase factor) which provides the academic foundation
of the density functional theory. Mathematically, the basic variable of density
functional theory is the electron density and for N electrons can be expressed as
[109],

n(r) = N

∫
dr2 · · ·

∫
drN |Ψ(r, r2 · · · rN)|2 (2.7)

The factor of N in Eq. 2.7 originates from the fact that electrons are indistin-
guishable. Therefore Eq. 2.7 is the probability that any of the N electrons can
be found in the infinitesimal vicinity volume of space, dr. The electron density
is an experimentally observable quantity which can be measured using X-ray
diffraction [114]. One must make sure that that the electron density contains all
necessary information about the system before using the electron density as the
new base variable. The electron density must contain information about the num-
ber of electrons N along with the information contained in the external potential
charcterized by V . The total number of electron is given by the integration of
the electron density over the spatial coordinates.

N =

∫
drn(r) (2.8)

What we now need to prove is that the electron density describes the external
potential uniquely. The proof relies on two theorems called the Hohenber-Kohn
theorems.
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2.1.4 The Hohenberg-Kohn Theorems

Hohenberg and Kohn proved that DFT is an exact theory and a low computational
cost method of solving the quantum mechanical many-body problem [115].
DFT is applicable not only to condensed matter systems but to any system of
interacting particles in an external potential Vext(r). DFT is based on the two
following theorems.
Hohenberg-Kohn theorem I
The ground state electron density n(r) of a system of interacting particles in
an external potential Vext(r) uniquely determines the external potential Vext(r),
except for a constant.
Except for a constant shift in energy, the ground state electron density decides
the full Hamiltonian. All the states, in principle, including ground and excited
states of the many-body wavefunctions can be calculated, i.e., the ground state
energy density determines uniquely all properties of the system completely.
Proof of Hohenberg-Kohn theorem I:
Here we consider the ground state of the system to be non-degenerate. Let us
assume that there are two different external potential Vext and V

′

ext that differ
more by than a constant however leading to the same electron density n(r). We
use the proof based on the minimum energy principle. The two external potential
would imply two different Hamiltonians, Ĥ and Ĥ ′ leading to two different
ground state wavefunctions, Ψ and Ψ

′
but with the same electron density. The

Schrödinger equation then becomes, ĤΨ = E0Ψ and Ĥ
′
Ψ
′
= E

′

0Ψ
′
. Since Ψ

′
is

not the ground state of Ĥ and Ψ is not the ground state of Ĥ
′
, it follows from

there that,

E0 <
〈

Ψ
′
∣∣∣ Ĥ ′

∣∣∣Ψ′
〉

<
〈

Ψ
′
∣∣∣ Ĥ ′

∣∣∣Ψ′
〉

+
〈

Ψ
′
∣∣∣ Ĥ − Ĥ ′

∣∣∣Ψ′
〉

< E
′

0 +

∫
n(r)[Vext − V

′

ext]dr (2.9)
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and

E
′

0 < 〈Ψ| Ĥ ′ |Ψ〉
< 〈Ψ| Ĥ |Ψ〉+ 〈Ψ| Ĥ ′ − Ĥ |Ψ〉

< E0 +

∫
n(r)[V

′

ext − Vext]dr (2.10)

Adding Eq. 2.9 and Eq. 2.10 leads to the contradiction that,

E0 + E
′

0 < E0 + E
′

0. (2.11)

This implies that there cannot be two different external potentials Vext(r) which
can give rise to the same electron density n(r), i.e., the ground state electron
density determines the external potential Vext(r) barring a constant. Even though
the exact form of the electron density is not know, there is a one-to-one corre-
sponding between the electron density n(r) and the external potential Vext(r).
Hohenberg-Kohn theorem II
There exists a universal functional F[n(r)] of the density, independent of the exter-
nal potential Vext(r), such that the global minimum value of the energy functional
E[n(r) =

∫
n(r)Vext(r)d(r) + F [n(r)]] is the exact ground state energy of the

system and the exact ground state density n(r) minimizes this functional. Thus the
exact ground state energy and density are fully determined by the functional E(r).

Proof of Hohenberg-Kohn theorem II:
Let T [n(r)] andEint[n(r)] be the kinetic and the interaction energy of the particle.
The universal functional can now be described as,

F [n(r)] = T [n(r)] + Eint[n(r)] (2.12)

For any given wavefunction, Ψ
′
, the energy function E[Ψ

′
] is expressed as,

E[Ψ
′
] =

〈
Ψ
′
∣∣∣ T̂ + V̂int + V̂ext

∣∣∣Ψ′
〉
. (2.13)

According to the variational principle, with the constraint that the total number
of particles is conserved, E[Ψ

′
] has its global minimum value only when Ψ

′
is

the ground state wavefunction Ψ0. Using the HK theorem I, Ψ
′
has to correspond
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to the electron density n
′
(r) and external potential V

′

ext(r), then E[Ψ
′
] is as

functional of n
′
(r). In accordance with variational principle

E[Ψ
′
] =

〈
Ψ
′
∣∣∣ T̂ + V̂int + V̂ext

∣∣∣Ψ′
〉

= E[n
′
(r)]

=

∫
n
′
(r)V

′

ext(r)dr + F [n
′
(r)]

> E[Ψ0]

=

∫
n(r)Vext(r)dr + F [n(r)]

= E[n0(r)] (2.14)

Therefore the energy functionalE[n(r)] =
∫
n(r)Vext(r)dr+F [n(r)] calculated

for the correct electron density n(r) is certainly lower than the value of this
functional for any other electron density n(r). Minimizing the total energy
functional of the system with respect to variations in the electronic density would
definitely guarantee the exact ground state electronic density and energy.

The HK theorems can be generalized to spin density functional theory having
spin degrees of freedom [116]. DFT can also be generalized to account for
temperature [117] and time dependence known as the time-dependent density
functional theory [118]. HK theorems inserts the electron density as the basic
variable. However, since the universal functional is unknown , it is still impossi-
ble to calculate any property of a system. Kohn and Sham [111] overcame this
difficulty in 1965 which is well known as the Kohn-Sham formalism.

2.1.5 The Kohn-Sham formalism

Making DFT calculations possible even with a single personal computer by
putting the HK theorems into practice is credited to the Kohn-Sham formalism.
Electronic structure calculation based on DFT are hence the most popular tool.

The KS formalism is to substitute the original many-body system by an
auxiliary independent-particle system while assuming both the systems have
exactly the same ground state electron density. It maps the original interacting
system with the actual potential onto an imaginary non-interacting system in
which the electron’s dynamics are governed by an effective Kohn-Sham single
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particle potential VKS(r). The Hamiltonian in atomic units (~ = me = e =
4π
ε0

= 1) of the auxiliary independent-particle system is expressed as,

ĤKS = −1

2
∇2 + VKS(r) (2.15)

With N independent electrons the ground state energy of the system is calculated
by solving the N one-electron Schrödinger equations,[

1

2
∇2 + VKS(r)

]
ψi(r) = εiψi(r) (2.16)

Each of the N orbitals ψi(r) have one electron with the lowest eigenvalues εi.
The electron density of the auxiliary system is derived from,

n(r) =
N∑
i=1

|ψi(r)|2 (2.17)

which is dealt with the conservation condition similar to that of Eq. 2.8. The aux-
iliary non-interacting independent-particle kinetic energy Ts[n(r)] is expressed
as,

Ts[n(r)] = −1

2

N∑
i=1

∫
ψ∗i (r)∇2ψ(r)dr (2.18)

and the universal functional F [n(r)] is rewritten as,

F [n(r)] = Ts[n(r)] + EH [n(r)] + EXC [n(r)] (2.19)

Here, EH [n(r)] is the Hartree energy of the electrons and is expressed as,

EH [n(r)] =
1

2

∫ ∫
n(r)n(r

′
)

|r− r′|
drdr

′
. (2.20)

EXC [n(r)] is the exchange-correlation energy which is defined as the difference
between the total exact energy and the sum of the kinetic and exchange energies.
The ground state energy of the many-body system is obtained by minimizing the
energy functional,

E[n(r)] = F [n(r)] +

∫
n(r)Vext(r)dr (2.21)
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governed by the condition that number of electrons N is conserved,

δ

{
F [n(r)] +

∫
n(r)Vextdr− µ

(∫
n(r)dr−N

)}
= 0. (2.22)

where µ is the Lagrange multiplier associated with the requirement of constant
particle number. The chemical potential, µ, which is essentially the Lagrange
multiplier associated with the requirement of constant particle number is given
by,

µ =
δF [n(r)]

δn(r)
+ Vext(r)

=
δTS[n(r)]

δn(r)
+ VKS(r) (2.23)

The KS one-particle potential is expressed as,

VKS(r) = Vext(r) + VH(r) + VXC(r)

= Vext(r) +
δEH [n(r)]

δn(r)
+
δEXC [n(r)]

δn(r)
(2.24)

Where the second and third term are the Hartree and XC potentials.
Equations 2.16, 2.17 and 2.24 together represent the KS equations. The KS

equations must be solved self-consistently since VKS(r) depends on the electron
density through the exchange-correlation potential. To calculate the electron
density,N equations in Eq. 2.16 are to be solved in the KS theory. The advantage
of the KS method is that while the size of a system increases, the problem in
itself does not get more difficult only the number of single particle equations
increase.

Though in principle the theory is exact, the unknown exchange correlation
energy functionals make the KS theory approximate in practice. An accurate,
mathematical definition of EXC [n(r)] is given by,

EXC [n(r)] = T [n(r)]− TS[n(r)] + Eint[n(r)]− EH [n(r)] (2.25)

Here, T [n(r)] and Eint[n(r)] are the exact kinetic and electron-electron inter-
action energies of the interacting system, respectively. To have a decent de-
scription of a practical condensed matter system, an accurate energy functional,
EXC [n(r)], or potential, VXC(r), are essential. In this thesis, the two most
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extensively used approximation for the XC potential are the local density ap-
proximation and the generalized-gradient approximation.

It must be noted that the KS energy eigenvalues in Eq. 2.16 are not for the
initial interacting many-body system and therefore have no physical meaning.
The KS energy eigenvalues cannot be understood as the one-electron excitation
energies of the many-body interacting system since the sum of the eigenvalues
of the occupied states in Eq. 2.16 are not equal to the energies which are added
or removed from the interacting many-body system, i.e., Etot 6=

∑occ.
i εi. The

eigenvalues in the Hartree-Fock theory represents the energy necessary to add
or remove an electron from a given orbital, also known as Koopmans’ theorem
[119]. The eigenvalues of the KS equations have been shown empirically to give
reasonable descriptions of the bandstructure. They have a physical (or at least
a mathematical) interpretation, often termed as the Janak theorem [120]. The
eigenvalue of the initial many-body system is the derivate of the total energy
with respect to the occupation of a state, i.e.,

εi =
dEtot

dni

=

∫
dEtot

dn(r)

dn(r)

dni
dr (2.26)

Janak’s theorem can only be applied to the addition or removal of an electron
from the highest occupied orbital. This is in sharp contrast to Koopmans’ theorem
for the Hartree-Fock approach in which electron can be extracted from or added
to any of the orbitals of the system.

2.1.6 Exchange-Correlation functionals

2.1.6.1 LDA: Local Density Approximation

The KS formalism maps successfully the initial interacting many-body system
onto a set of independent single-particle equations making the problem much eas-
ier. Without the exact form of XC energy functionalEXC [n(r)], the KS equations
cannot be solved. One would assume that the exact correlation energy functional
EXC [n(r)] would be very complicated. However, there have been simple but
extremely successful approximations made which not only save computational
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time but also predict various properties of many systems reasonably well. This
has led to a wide use of DFT calculations for electronic structure calculations.
The local density approximation is one of these approximations and is one of the
most extensively used exchange correlation function. In LDA, the XC energy
per electron is treated as that for a homogeneous electron gas (HEG) having the
same electron density at some point r. The total energy exchange-correlation
functional EXC [n(r)] can be expressed as,

ELDA
XC [n(r)] =

∫
n(r)εhomXC [n(r)]dr

=

∫
n(r)

[
εhomX [n(r)] + εhomC [n(r)]

]
dr

= ELDA
X [n(r)] + ELDA

C [n(r)] (2.27)

Here the homogeneous exchange correlation electron density εhomXC [n(r)] is a just
a function of the density. It is decomposed into the exchange energy electron
density εhomX [n(r)] and the correlation energy electron density εhomC [n(r)]. There-
fore the XC energy functional now gets decomposed into the exchange energy
functionalELDA

X [n(r)] and the correlation energy functionalELDA
C [n(r)] linearly.

The exchange energy functionalELDA
X [n(r)] uses the expression for a HEG since

the analytical form is well known [121]. Thus ELDA
X [n(r)] is expressed as,

ELDA
X [n(r)] =

∫
n(r)εhomX [n(r)]dr

= −3

4

(
3

π

) 1
3

n(r)
1
3 (2.28)

where, εhomX (n) = −3
4

(
3
π

) 1
3

n(r)
1
3 , is the exchange energy electron density of

the HEG first introduced by Dirac [121]. It is only in the low and high electron
density limits that the analytic expressions for the correlation energy of the HEG
are known. For the low electron energy density limit, the expression is given in
the form,

εC =
1

2

(
g0

rs
+
g1

r
3
2
s

+ · · ·
)

(2.29)
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Here the rs is the Wigner-Seitz radius and is related to electron density in form
expressed as,

4

3
πr3

s =
1

n
(2.30)

For example, Wigner solved the problem exactly in the row limit regime, the
Wigner crystal, assuming the correlation energy would go to a constant in the
high rs limit and suggested a smooth interpolation inbetween the two extreme
limits to have the form,

εC = − 0.44

rs + 7.8
(2.31)

At the high density limit, the form of the correlation energy electron density of
the HEG in expressed as,

εC = A ln(rs) +B + rs(C ln(rs) +D) + · · · (2.32)

For example, Gellman and Breuckner following a diagrammatic method, sum-
ming an infinite series of Feynman diagrams, calculated the high rs limit exactly
shown to be,

εC = 0.311 ln(rs)− 0.048 + rs(A ln(rs) + C) + · · · (2.33)

In this approach, the low rs is retained and an interpolation is made between
the two limits similar to Wigner’s treatment. To accurately obtain intermedi-
ate electron density values, one would require quantum Monte Carlo (QMC)
simulations for the energy of the HEG. These have been calculated for many
intermediate electron density values [122]. While reproducing the exactly known
limiting behavior, most local density approximations to the correlation energy
density interpolate these QMC simulations. Built on these analytic forms for
εC , various local density approximations were proposed by Vosko-Wilk-Nusair
[123], Perdew-Zunger [124], Cole-Perdew [125], Perdew-Wang [126]. In LDA,
the exchange correlation potential, VXC(r), is expressed as,

V LDA
XC =

δELDA
XC

δn(r)

= ε(n(r)) + n(r)
δεXC(n(r))

δn(r)
(2.34)
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The total energy of the system withing the LDA is expressed as,

Etot[n(r)] = Ts[n(r)] + EH [n(r)] + EXC [n(r)] +

∫
n(r)Vext(r)dr

=
occ∑
i

〈ψi(r)| −
1

2
∇2 |ψi(r)〉+ EH [n(r)] + EXC [n(r)] +

∫
n(r)Vext(r)dr

=
occ∑
i

〈ψi(r)| −
1

2
∇2 + VH + VXC + Vext |ψi(r)〉

−
occ∑
i

〈ψi(r)|VH(r) |ψi(r)〉 −
occ∑
i

〈ψi(r)|VXC(r) |ψi(r)〉

−
occ∑
i

〈ψi(r)|Vext(r) |ψi(r)〉+ EH [n(r)] + EXC [n(r)] +

∫
n(r)Vext(r)dr

=
occ∑
i

εi −
1

2

∫
n(r)n(r′)

|r− r′|
drdr

′
+

∫
n(r)(εXC(r)− VXC(r))dr

=
occ∑
i

εi −
1

2

∫
n(r)n(r′)

|r− r′|
drdr

′
+

∫
n(r)2δεXC(n(r))

δn(r)
dr (2.35)

In the LDA, the modifications to the exchange-correlation energy as a result of
the inhomogeneities in the electronic density are avoided. The LDA addresses
the sum rule to the exchange-correlation hole correctly, i.e., there is a total elec-
tronic charge of one electron eliminated from the surrounding of the electron at
r. It is therefore still remarkably successful and rewarding since it works well
even with systems where the electron density vary promptly. However, it under-
estimates the atomic ground state energy as well as ionization energies while
overestimating binding energies. The energy band gaps of few semiconductors
are not represented correctly. The disadvantages have led to approximation of
the XC energy functionals beyond the LDA through the addition of gradient
corrections to integrate longer range gradient effects, known as the GGA.

2.1.6.2 GGA: Generalized Gradient Approximation

The exchange-correlation energy of inhomogeneous charge density can be greatly
dissimilar from the HEG result. LDA disregards the inhomogeneities of the
actual charge electron density. An initial attempt was the gradient-expansion
approximation in which one tries to methodically calculate gradient corrections
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having the form |∇n(r)|, |∇n(r)|2, |∇2n(r)|, ·, etc., to the LDA. The incorpora-
tion of lower-order gradient corrections never improve the LDA and sometimes
even worsen it [127] while higher-order corrections are exceedingly difficult to
calculate. Instead of using power-series-like gradient expansions, it was observed
that one could apply general functions of n(r) and ∇n(r). This gives rise to
different generalized-gradient approximations (GGA) which incorporate density
gradient corrections of the electron density which should result in better results
as that compared to GGA in cases where the inhomogeneous electron charge
density are distinct from the HEG. These functionals have the general form,

EGGA
XC [n(r)] =

∫
fGGA(n(r),∇n(r))dr, (2.36)

As a result of their dependence on ∇n(r), GGAs are often called "semi-local"
functionals. Notably for covalent bonds and weakly bonded systems, GGAs are
preferable over the LDA for calculations of physical properties such as geome-
tries, ground state energies of solids and molecules. Due to the amount of various
choices of fGGA, plenty of GGA functionals have been developed. Depending
on the system at hand a broad variety of results can be collected. Assuring the
the compatibility with the known sum rules, the functional expression of fGGA

is derived as a correction to the LDA exchange and correlation energies. The
GGA exchange energy is expressed as,

EGGA
X [n(r)] =

∫
n(r)εhomX n(r)FGGA

X (s)dr. (2.37)

The exchange enhancement factor, FGGA
X (s), informs how much exchange en-

ergy is enhanced over its LDA value for a given electron density. Where s is the
dimensionless reduced gradient and is expressed as,

s =
|n(r)|

2(3π2)
1
3n(r)

4
3

. (2.38)

This choice of FGGA
X (s) makes one GGA different from another. Two broadly

used GGA exchange functionals are the Perdew-Burke-Ernzehof (PBE)[128]
and Becke88 [129] functionals. To demonstrate what FGGA

X (s) is, we express
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the forms of the enhancement factor for two popular GGA exchange functionals,

F PBE
X (s) = 1 + κ− κ

1 + µs2

κ

FB88
X (s) = 1 +

βx(s)2

C[1 + 6βx(s) sinh−1(x(s))]

x(s) = 2(6π2)
1
3s (2.39)

The non-empirical parameters, κ and µ are obtained from physical constraints
in the case of PBE. However, for the parameters in the B88 case, C and β are
obtained from empirical fitting. It can be easily seen that when the energy density
gradient is zero, we return to the LDA exchange since FGGA

X (s) = 1. It is easy
to see that for small s, i.e., slowly varying densities, the LDA and GGA would
yield similar results while for densities which vary rapidly, i.e., the functionals
differ. The other popular gradient correlation functionals for GGA are PW91
[130], Lee-Yang-Parr (LYP)[131] and Perdew86 (P86)[132]

2.1.7 Solving the Kohn Sham equations

Figure 2.1: Flowchart of the self-consistent
iterative method for solving the KS equations.

The Kohn-Sham equations cater to obtaining
the exact electronic density and energy of the
grounds state of a many-body condensed mat-
ter system by using the independent particle
method. Since the effective KS potential, VKS ,
and the electron density, n(r), are closely re-
lated, the KS equations ought to be solved con-
sistently. As seen in Fig. 2.1, the process is
numerically done through some self-consistent
iterations. The approach starts with an initial
electron density (usually a superposition of
atomic electron density), then the effective KS
potential, VKS, is calculated and the KS equa-
tion is solved with single-particle eigenvalues and wavefunctions. From the
wavefunctions, a new electron density is obtained. The self-consistent conditions
are checked either by the change in ground state energy or the electron density
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or if the force on each atoms has a value smaller than a given criteria. Once
self-consistency is attained, physical quantities, viz, total energy, forces, stress,
eigenvalues, electron density of states, bandstructure, etc. can be determined.

2.1.7.1 Basis Sets

Basis sets are essential to solve the electronic Schrödinger equation. All elec-
tronic structure codes and methods depend on the expansion of the unknown
wavefunction in terms of a set of basis function. In principle, any type of basis
function can be implemented. The most common basis sets are for example are
plane-wave, Gaussian, polynomial, spline, Slater type orbitals, numeric atomic
orbitals, etc. One should take care while selecting the basis functions. The
following are two issues which should be taken into consideration - (i) The wave-
function and the electronic density should be accurately described by the basis
function with as low a computational time as possible. (ii) The characteristics of
the basis functions should represent the physics of the problem. For example,
in molecular or atomic systems, the basis functions must vanish as the distance
between the nucleus and the electron becomes large. For a crystal or solid or
any condensed matter system, basis functions should have the periodicity of the
crystal lattice. Therefore atom centered orbitals like Gaussian basis functions are
popular for atomic and molecular systems while the plane wave basis functions
are favored for electronic structure calculations of condensed matter systems.

2.1.7.2 Plane waves method

In this thesis, all our calculations were performed on solids and hence we discuss
the approach based only on the plane wave basis functions with pseudopotentials.
In present day DFT calculations the combination of plane wave basis sets and
pseudopotentials are the main methods implemented for periodic systems. It is
because of Bloch’s theorem that plane wave basis sets have become the obvious
choice for the treatment of periodic systems. Assume a periodic potential U(r),
such that U(r + R) = U(r) where R is the Bravais lattice vector. Bloch’s
theorem states that the eigenfunctions of the one-electron Hamiltonian H =

−1
2∇

2 + U(r) can be expressed as a product of a plane wave, (eik·r), and a
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function, φn,k(r), having the same periodicity as that of the potential U(r),

ψn,k(r) = eik·rφn,k(r) (2.40)

with the condition that φn,k(r + R) = φn,k(r). The index n is a quantum number
termed as the ’band index’ and k represents a series of plane-waves inside the
primitive unit cell. Bloch theorem permits the expansion of the electronic wave
function in terms of discrete set of plane waves. Due to the periodicity, the
solid will have an infinite number of electrons and therefore the spacing of the k

points will vanish and the wave vector can be treated as a continuous variable.
While only a finite number of electronic states are occupied for each k point, the
infinite number of electrons in the solid are dealt with by an infinite number of k
points. Physical properties such as the electronic potential, electronic density
and ground state energy are attributed to the occupied states at each k point.
Effective methods have been constructed to select finite sets of k points to obtain
the mentioned physical properties. The most popular approach and the one
used in this thesis is the method proposed by Monkhorst and Pack [133]. The
Monkhorst and Pack method generates a uniform k-point mesh along the three
lattice vectors in reciprocal space. It is important to test the convergence of
the results by the size of the k mesh used in calculations since the measure of
error in the total energy or difference in the energy because of the inadequate
number of k−points sampling can be reduced by increasing the k point mesh.
Expanding the periodic function φn,k(r) with plane waves having wave vectors
that are the reciprocal lattice vectors (G) of the periodic crystal,

φn,k =
∑
G

Cn,Ge
iG·r (2.41)

Resulting in the electronic wave function to be expressed as,

ψn,k =
∑
G

Cn,k+Ge
i(k+G)·r (2.42)

Solving the one electron Schödinger-like Kohn-Sham equation having an effec-
tive periodic potential, the KS wave function can be expanded using a plane
wave basis set as shown in Eq. 2.42. The resultant KS equation can then be
revised as,∑

G′

[
1

2
|k + G

′|2δG,G′ + Veff(G−G
′
)

]
Cn,k+G′ = εnCn,k+G (2.43)
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The Kronecker δ indicates that the kinetic energy is diagonal. Here εn represent
the electronic energies. Eq. 2.43 is basically the Schödinger-like equations of a
periodic crystal having a plane wave basis set. Since the sum is over G

′
, it would

require an infinite number of plane waves to solve Eq. 2.43. The criteria to
truncate the basis set to include only plane waves having kinetic energies lowere
than a particular cutoff, Ecut is given by,

1

2
|k + G|2 ≤ Ecut. (2.44)

Implementing a finite basis causes an additional inaccuracy which can be mini-
mized by increasing the number of plane waves, i.e., increasing the numerical
value of Ecut Therefore, one would have to run a convergence test to find a
numerical value for Ecut to compute accurately the properties of interests.

2.1.7.3 Pseudopotentials

Figure 2.2: (a)Graphic interpretation of the all-
electron ionic potential and wave function, shown
in dashed line along with their pseudopotial and
wave function shown in solid lines. (b) The radial
wave function, shown in solid line for the Oxygen
2p orbital along with the pseudo wave function us-
ing norm conserving rule [16] and the ultrasoft Van-
derbilt pseudo wave function [17]. Figure adapted
from Ref. [17].

It is well accepted that most all physically
interesting properties of solids are deter-
mined by the valence electrons rather than
the core electrons. At the same time the
core electrons need a large amount of ba-
sis function for their description within the
plan-wave basis set. The core electrons
take up most of the computational time.
To resolve this dilemma, one uses the pseu-
dopotential approximation, i.e., the strong
ionic potential is substituted with a pseudo-
potential. The pseudopotentials are based
on the following two formalisms. (i) The
pseudopotential has to be weaker than the

strong ionic potential so as to get rid of the plane waves required to characterize
the core electrons. (ii)To eliminate the swift oscillations of the valence elec-
tron wave functions near the core region. The two mentioned formalisms are
illustrated in Fig. 2.2. It can be observed that pseudopotential is weaker than
the all-electron potential. It can also be seen that the pseudo wave function has

41



Chapter 2 2.1. Density functional theory

no radial node within the core region. The most crucial requirement with the
scheme is that outside the core region, the pseudopotential and pseudo wave
functions become analogous with what corresponds to the all-electron ones. The
most commonly used form of a pseudopotential is expressed as,

Vps =
∑
lm

|Ylm〉Vl(r) 〈Ylm| (2.45)

An important class of pseudopotentials are the norm-conserving pseudopoten-
tials. It necessitates that the all-electron and pseudo-wave function agree beyond
some chosen radius (rc). The name is derived from the fact the integrated density
with rc for the all-electron wave function and pseudo wavefunction are equiv-
alent, hence ’norm conservation’. Troullier and Martins [134], Kerker [135],
Hamann,Schlüter and Chiang [16], Vanderbilt [136], Goedecker-Teter-Hutter
[137] have introduced some of the most popular norm-conserving pseudopoten-
tials.

It sometimes happen that the pseudopotential wave functions generated are
not smoother than the all-electron one due to the “norm-conserving” criteria.
For example, as depicted in the Fig 2.2(b) for Oxygen, there is hardly any
achievement for the norm-conserving pseudopotential as compared with its all-
electron counterpart. To overcome this difficulty, Vanderbilt [17], made the
rather unconventional modification to disobey the norm conservation rule, i.e.,
to relax the criteria that the pseudo-wave function inside the core region should
have the same charge or integrated density as the all-electron wave function.
This shortfall of the charge is compensated by additional localized atom-centered
charges. These additional charges are characterized by the charge difference
between the all-electron and pseudo potential wave function. In this way, rc
can be chosen to be larger and the pseudo wave function can be made much
softer as compared to the all-electron wave function, as depicted in Fig. 2.2(b).
Therefore this type of pseudopotential derives it name, ultrasoft pseudopotential.
They enable much lower plane wave cut-offs used in practical calculations.
The merging of DFT, plane-wave basis set and pseudopotential is an effective
technique in electronic structure calculations of condensed matter many body
systems and is what we have used in all of our DFT calculations.
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2.2 Density Functional Perturbation Theory.2

2.2.1 Introduction

DFT has provided a satisfactory technique to obtain the ground state properties
of electronic systems for the many body system, whether in solids, nanostruc-
tures, or molecules. Many physical properties such as polarisabilities, phonons,
Raman intensities and infra-red absorption cross-sections depend upon a system
response to some form of perturbation. Density functional perturbation theory
(DFPT) is a powerful theoretical technique that allows calculation of such prop-
erties within the DFT framework, thereby facilitating an understanding of the
microscopic quantum mechanical mechanisms behind such processes, as well
as providing a rigorous testing ground for theoretical developments. System
responses to external perturbations may be calculated using DFT with the addi-
tion of some perturbing potential. The DFPT method was formulated at the end
of 1980s and has been successful in predicting and confirming experimentally
observable quantities. Initial advancement of DFPT was developed by Baroni,
Giannozzi and Testa in Trieste [138]. The most significant numerical codes
which implement DFPT are QUANTUM ESPRESSO [139], ABINIT [140],
VASP [141], OCTOPUS [142] and CASTEP [143].

2.2.2 Response Function

The second, third or higher order derivatives of the total energy with respect to
perturbations are termed as the responses functions. Many appealing response
functions are the result of the application of an extrinsic perturbation to the
system under consideration. Usual perturbations are atomic displacements, ho-
mogeneous external or magnetic fields, strain, etc.. The physical characteristics
associated to the total, i.e., contribution from electronic as well as ionic, energy
can be classified as, 1st-, 2nd- and 3rd order. Examples of physical properties
pertaining to the 1st order are forces, stress, dipole moment, etc., pertaining to the
2nd order are phonon dynamical matrix, elastic constants, dielectric susceptibility,
Born effective charges, piezoelectricity, internal strain, etc., and pertaining to

2This theory has been implemented in Chapter 3 and 4
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the 3rd order are non-linear dielectric susceptibility, phonon-phonon interaction,
Grüneisen parameters, anharmonic elastic constants, etc. Thermal expansion and
entropy are additional physical characteristics that are attained by integrating
the total energy over phonon degrees of freedom. Using direct approaches such
as finite differences, molecular dynamics spectral investigation or perturbative
techniques, the total energy derivatives can be calculated. The direct approach
involves shortcomings, arising from size effects, ergodicity restriction, com-
plication in decoupling the responses to perturbation of different wavelengths.
However, the pertubative technique used in DFT recognises not only periodic
perturbations but also perturbations corresponding to non-zero, commensurate or
incommensurate wavevectors [144]. The perturbative technique can be combined
with the usual DFT framework since the calculations involving the 1st order
corrections to wavefunction incorporated in the perturbation theory can be ac-
complished via the variational method. These algorithms are analogous to those
used in the unperturbed computations, i.e., the ground state DFT calculations.

2.2.3 Mathematical groundwork

By minimizing the functional of the electronic density, the ground-state DFT
energy can be calculated,

Eel[n(λ)] =

Ne∑
i=1

〈ψi(λ)|T + Vext(λ) |ψi(λ)〉+ EHxc
[n(λ)] (2.46)

with the orthonormal constraint for the Kohn-Sham orbitals,

〈ψi(λ)|ψj(λ)〉 = δij (2.47)

Where T is the kinetic energy operator, Vext is the external potential including
the nuclear potential, EHxc

is the combined Hartree and exchange-correlation
energy functional and λ is the Lagrange multiplier. The summation in Eq. 2.46
runs over all occupied states. The electronic density can now be minimized
utilizing the Lagrange multiplier approach,

n(r, λ) =

Ne∑
i=1

ψ∗i (r, λ)ψi(r, λ) = n0(r) + λn1(r) + λ2n2(r) + · · · (2.48)
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where λ is the Lagrange multiplier. The Euler-Langrange equations can be
shaped in the form of a Schrödinger equation, with the Hamiltonian expressed
as,

H = T + Vext(λ) + VHXC
(λ) (2.49)

Here,

VHXC
(r, λ) =

δEHXC
[n(λ)]

δn(r)
(2.50)

As in standard perturbation theory, it is assumed that the unperturbed system
(λ = 0) is exactly solvable and the information of the perturbing potential is
certain at higher orders. The intention of density functional theory is to calculate
the derivatives relative to the different perturbations of the DFT electronic energy.
Detail derivation of the DFPT equations can be found in Reference [138]. The
remaining electrostatic repulsion between nuclei has to be added to the electronic
contribution to represent the Born-Oppenheimer energy. Generally, the nuclei-
nuclei interaction energy is obtained by considering the nuclei as classical point
charges. This does not demonstrate computational problems and we therefore
concentrate only the contributions from electrons. Using perturbation theory,
the first order correction to the electronic energy is calculated from the 0th order
wavefunctions and the perturbing potential at the 1st order,

E
(1)
el =

Ne∑
i=1

〈
ψ

(0)
i

∣∣∣H(1)
∣∣∣ψ(0)

i

〉
=

Ne∑
i=1

〈
ψ

(0)
i

∣∣∣T + V
(1)
ext

∣∣∣ψ(0)
i

〉
+
dEHXC

[n(0)]

dλ
|λ=0. (2.51)

The above equation (Eq. 2.51) is the Hellmann-Feynman theorem for DFT. At
first order the constraint is given by,〈

ψ
(0)
i

∣∣∣ψ(1)
i

〉
+
〈
ψ

(1)
i

∣∣∣ψ(0)
i

〉
= 0 (2.52)

By solving the Sternheimer equation [145, 146], the first order evolved wave-
functions are calculated either by iterative techniques or by a self-consistent
approach similar to that of the self-consistent solution of the unperturbed system
in which the Kohn-Sham equation is replaced by,

(H(0) − ε(0)
i ) |ψi(1)〉 = −(H(1) − ε(1)

i ) |ψi(0)〉 . (2.53)
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Here, ε(0) and ε(1) are the 0th and 1(st) order eigenvalues. Sternheimer yields a
system of Ne linearly coupled equations which is relatively easier than standard
DFT, where the EXC [n] has a non linear dependence. Solution of ψ(1)

i of Eq.
2.53 is calculated implementing the sum over states expression,

∣∣∣ψ(1)
i

〉
=
∑
j

∣∣∣ψ(0)
j

〉 〈ψ(0)
j

∣∣∣H(1)
∣∣∣ψ(0)

i

〉
ε

(0)
i − ε

(0)
j

(2.54)

Other than the particular eigenstate under consideration, the sum runs over the
entire states, both occupied as well as unoccupied states, of the system. The
above evolved wavefunction deals on with the information of eigenvalues and
eigenvectors of the unperturbed Hamiltonian and the perturbing potential at
the 1st order. The extent to which DFPT is valid is governed by the condition
that the external perturbation is small, i.e., λ

∣∣∣ψ(1)
i

〉
�
∣∣∣ψ(0)

j

〉
. Eq. 2.54 then

implies that
∣∣∣λ〈ψ(0)

j

∣∣∣H(1)
∣∣∣ψ(0)

i

〉 ∣∣∣ � |ε(0)
i − ε

(0)
j |, meaning that the external

perturbation must be small relative to the electronic excitations. The first order
modified density can be calculated from the 1st order change in wavefunction
ψ

(1)
i expressed as,

n(1)(r) =

Ne∑
i=1

[
ψ
∗(1)
i (r)ψ

(0)(r)
I + ψ

∗(0)
i (r)ψ

(1)(r)
I

]
(2.55)

and the calculation of the first-order change in the Hamiltonian is then expressed
as,

H(1) = T (1) + V
(1)
ext + V

(1)
HXC

= T (1) + V
(1)
ext +

∫
δ2EHXC

δn(r)δn(r′)

∣∣∣∣∣
n(0)

n(1)(r
′
)dr

′
(2.56)

From a non-variational expression derived from perturbation theory, the 2nd

order derivative of the electronic energy is then expressed as,

E
(2)
el =

Ne∑
i=1

〈
ψ

(0)
i

∣∣∣H(2)
∣∣∣ψ(0)

i

〉
+
〈
ψ

(0)
i

∣∣∣H(1)
∣∣∣ψ(1)

i

〉
(2.57)
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With the constraints
〈
ψ

(0)
i

∣∣∣ψ(0)
i

〉
= 0 for all of the occupied states i, j, a more

precise variational expression can be calculated by minimizing,

E
(2)
el (ψ

(0)
i ), (ψ

(1)
i )] =

Ne∑
i=1

[〈
ψ

(0)
i

∣∣∣ (T + Vext)
(2)
∣∣∣ψ(0)

i

〉
+

〈
ψ

(1)
i

∣∣∣ (H − εi)(0)
∣∣∣ψ(1)

i

〉
+
〈
ψ

(0)
i

∣∣∣ (T + Vext)
(1)
∣∣∣ψ(1)

i

〉
+

〈
ψ

(1)
i

∣∣∣ (T + Vext)
(1)
∣∣∣ψ(0)

i

〉
+

1

2

∫ ∫
δ2EHXC

[n(0)]

δn(r)δn(r′)
n(1)(r)n(1)(r

′
)drdr

′

+

∫
d

dλ

δ2EHXC
[n(0)]

δn(r)

∣∣∣∣∣
λ=0

n(1)(r)dr +
1

2

d2EHXC
[n(0)]

dλ2

∣∣∣∣∣
λ=0

]
, (2.58)

relative to (ψ
(1)
i ). The 2nd order derivatives of the total energy are entirely driven

by the 1st order derivatives of the wavefunctions which is evident from Eq. 2.57
and 2.58. In both methods, the standard perturbation theory and DFPT, it can
be demonstrated that the 3rd order correction to the energies are acquired by
having the knowledge of the modification of the wavefunctions up to the 1st

order. These results are an aftermath of a more formally known theorem known
as “2n + 1” theorem of quantum mechanics. The “2n + 1” theorem, which
follows from variational principle and implemented in DFT [147], states that
the information of the derivatives of the wavefunctions at order n allows the
computations of the derivatives of the energy up to order “2n+ 1”. The practical
significance of the “2n+ 1” theorem is that it permits one to approach the 3rd

order derivatives, which deals with Grüneisen parameters, Raman scattering
cross sections, phonon line widths, etc., of the total energy having the same
computational cost as that of harmonic properties. Another important property
of the theorem is that once particular first-order wavefunctions are established,
the non variational expressions extracted from Eq.2.57 can be used to acquire
various other mixed perturbations, with no additional computational costs.

2.2.4 Phonon dispersion

The quantum mechanical description of bulk or two-dimensional materials
are generally executed using the adiabatic approximation known as the Born-
Oppenheimer (BO) approximation. If we recall section 2.1.2, the BO approxima-
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tion depends on the mass of the nuclei being much greater relative to electrons,
which follows that the motion of the nuclei is smaller that the motions of the
electrons. This makes it possible to decouple the nuclear, i.e., vibrational, and
the electron degrees of freedom in the Hamiltonian and execute the calculations
of the total energy of the system in two distinct steps. The kinetic energy of the
nuclei is considered to be a constant and the calculation dealing with it are taken
away from the total Hamiltonian. The following BO Hamiltonian, HBO then
depends parametrically on the positions of the nuclei, τ , and the dynamics of the
interacting electrons are characterised by electrostatic field of the the nuclei at
their fixed positions,

HBO(τ) = −1

2

∑
i

∂2

∂r2
i

+
1

2

∑
i6=j

1

|ri − rj|

−
∑
i,κ

Zκ
|ri − τκ|

+
1

2

∑
κ6=µ

ZκZµ
|τκ − τµ|

(2.59)

Here, the electronic coordinates are denoted as r with labels i, j. Similarly the
labels τ, µ correspond to the nuclei having a nuclear charge of Z. One can use
DFT methods to achieve the ground state BO energy of the system, EBO. The
kinetic energy of the nuclei is then added, producing a Schrödinger equation for
the nuclear motion governing the dynamics of the lattice of the system,(

− 1

2

∑
κ

1

Mκ

∂2

∂τ 2
κ

+ EBO(τ)
)

Ψ(τ) = EΨ(τ) (2.60)

Here, Mκ are the atomic masses and E is the total energy of the system. Assum-
ing that the system under consideration is periodic and therefore be described
by the periodic repetition of a unit cell. Relative to the chosen origin, let vector
R describe the position of a periodic image of the unit cell, where the labels κ
and β correspond to the nucleus within the unit cell and the Cartesian directions,
respectively. The nuclei are not rigid, i.e., they are not fixed to their classical
zero-temperature initial positions but carry out small displacements uRκβ in the
vicinity about their equilibrium positions, τRκβ. Expanding the BO energy of the
system in Taylor series as a function of nuclear displacements,

EBO = E0
BO +

1

2

∑
Rκβ

∑
R′κ′β′

∂2EBO

∂τRκβτR′κ′β′
uRκβuR′κ′β′ + · · · (2.61)
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Here, E0
BO is the minimum BO energy when there are no displacements, a

quantity that can be obtained using DFT. The linear contribution in the series, Eq.
2.61, vanishes because the 1st order term describes the forces on each nucleus.
The forces at equilibrium, when EBO reaches a minimum, FRκβ = ∂EBO

∂τRκβ
= 0.

Since the 2nd derivative of energy is termed ’harmonic’, truncating the Taylor
series at the 2nd order is known as the ’harmonic approximation’.

According to the principle of virtual work, when a nucleus is disturbed from
its equilibrium position a force emerges to get the atom to its initial position. In
the harmonic approximation Eq. 2.61, the force on the nucleus demonstrates a
linear dependence on the displacement of the nucleus under investigation,

F (R
′
κ
′
β
′
) =

∂EBO

∂uRκβ
= −

∑
R′κ′β′

∂2EBO

∂τRκβ∂τR′κ′β′
uR′κ′β′

= −
∑
R′κ′β′

Φ(2)(Rκβ;R
′
κ
′
β
′
)uR′κ′β′ (2.62)

Eq. 2.62 describes the force on the nucleus under consideration at κ due to the
displacement of another nucleus at κ

′
and describes the matrix of the interatomic

force constants(IFCs). The lattice dynamics is determined by classical mechanics
where the solution, in the harmonic approximation, is a superposition of the
normal modes of vibration of the crystal. The normal modes are written as Bloch
states when periodicity of the crystal is taken into account, i.e., the product of a
lattice-periodic function and plane wave,

URmq(κβ) = eiq·RURmq, (2.63)

where q, which characterizes the normal modes of vibration, is the wavevec-
tor in the first Brillouin zone. The harmonic approach also indicates a phase
dependency on time, e− to be inserted in Eq.2.63. The nuclear displacements
URmq(κβ), in quantum mechanics, are quantized and are termed as phonons.
These phonon eigen-displacements with their frequencies ωmq are calculated by
solving the generalized eigenvalue equation for periodic Bloch state,∑

κ′β′

Φ(2)(κβ;κ
′
β
′
; q)Umq(κ

′
β
′
) = Mκω

2
mqUmq(κβ) (2.64)
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Here, Φ(2)(κβ;κ
′
β
′
; q) is the Fourier transform of the IFC matrix

Φ(2)(κβ;κ
′
β
′
; q) =

∑
R′

Φ(2)(0κβ;R
′
κ
′
β
′
)eiq·R

′

(2.65)

with the eigen-displacement normalization constraint,∑
κβ

Mκ[Umq(κβ)]∗Umq(κβ) = 1. (2.66)

The dimension of the dynamical matrix for a system under consideration with N
atoms in the unit cell is 3N × 3N . The eigen-displacements are vectors having
length 3N which characterize the displacements of the N nuclei along the 3
Cartesian directions. As in the case in electrons, the following phonon band
dispersion is not unbounded from above and contains exactly 3N bands. The
IFCs are able to be calculated precisely and efficiently using DFPT since the IFC
and dynamical matrices are 2nd-order derivates of the BO energy relative to the
atomic displacements.

2.3 Boltzmann Transport Theory.3

2.3.1 Introduction

The statistical description of a thermodynamic system which is not in the state of
equilibrium is characterised by the Boltzmann equation or Boltzmann transport
equation (BTE) introduced by Ludwig Boltzmann [148]. The dynamics of an
energetic particle in a crystal is generally described by the Boltzmann transport
equation. The equation is derived by not examining individual positions and
momentum but instead by investigating a probability for the position and mo-
mentum for a typical particle, i.e., the probability that the particle occupies a
differential domain in space, d3r, centred at some position r having a momentum
p occupying a differential domain in momentum space d3p. The BTE is used
to govern how physical quantities change such as heat energy and momentum.
Variation of other properties such as electrical conductivity, mobility, Seebeck
coefficient, Power factor etc. can be obtained by treating the charge carriers in
the material as an electron gas.

3This theory has been implemented in Chapter 3, 4, 5 and 6
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The lattice thermal conductivity, κL, can also be derived from the phonon
Boltzmann transport equation. κL for materials (mainly semiconductors) and has
been studied for many years employing different theoretical methods. However,
the ultimate aim is to obtain a predictive theory for κL. As the fundamental
studies and manufacture of nano-scale based devices develop, a microscopic
understanding of phonon transport is necessary. A rapidly progressing field is
that of thermoelectric. A dimensionless parameter known as figure of merit,
ZT = S2σT

κ , is a measure of efficiency of a thermoelectric material. Here, σ, S,
T and κ is the electrical conductivity, Seebeck coefficient, temperature and total
(contributions both due to electrons and phonons) thermal conductivity. The
temperature dependence of each of parameters that constitute the figure of merit
can be calculated using the BTE.

The capability of DFT as a rigorous approach in calculating electronic prop-
erties of materials, where the electron exchange and correlation effects are
relatively weaker, is well established. As mentioned in the previous sections, the
linear response of the electron density to lattice distortions is accessible through
DFPT. Using the “2n+ 1” theorem, the DFPT method can be employed to derive
the harmonic as well as the third order anharmonic interatomic force constants.
In this section we describe a theoretical frame work by combining these ab-initio
methods along with an iterative solution of the BTE equation without any form
of adjustable parameters.

2.3.2 Boltzmann equations to obtain electron
transport coefficients

The Boltzmann transport equation states that there is no net change in the
distribution function, f(r,k, t), which governs the probability of discovering an
electron at position r, with crystal momentum k and at time t at steady state.
Due to the distinct three processes of diffusion, the effect of forces and fields,
and collisions, the sum of the changes in f(r,k, t) would result to zero,

∂(r,k, t)

∂t

∣∣∣∣
diffusion

+
∂(r,k, t)

∂t

∣∣∣∣
fields

+
∂(r,k, t)

∂t

∣∣∣∣
collisions

(2.67)
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A standard procedure is to rewrite the differential form for the diffusion process
as,

∂(r,k, t)

∂t

∣∣∣∣
diffusion

= −v(k) · ∂(r,k, t)

∂r
(2.68)

which demonstrates the continuity equation without forces, fields and collisions
in real space. The differential form for the forces and fields are correspondingly
written as,

∂(r,k, t)

∂t

∣∣∣∣
fields

= −∂k
∂t
· ∂(r,k, t)

∂k
(2.69)

to acquire the Boltzmann equation,

∂(r,k, t)

∂t
+ v(k) · ∂(r,k, t)

∂r
+
∂k

∂t
· ∂(r,k, t)

∂k
=
∂(r,k, t)

∂t

∣∣∣∣
collisions

(2.70)

The left hand side of equation 2.70 involves derivatives of all the variables
of the distribution function while the right hand side are the collision terms.
The first explicit time dependent term in 2.70 is essential for the solution of ac
driving forces or for impulse perturbation. The Boltzmann’s equation is generally
solved adopting two approximations, (i) The perturbation caused because of the
fields and forces is to be assumed small so that the distribution function can
be linearized, f(r,k) = f0(E) + f1(r,k). f0(E), which depends only on the
energy E, is the equilibrium distribution function, the Fermi function. f1(r,k) is
the perturbation term contributing to the deviation from equilibrium. (ii) For the
system to turn back to equilibrium uniformly, the collision term in the Boltzmann
equation is expressed in the relaxation time approximation,

∂f

∂t

∣∣∣
collision

= −(f − f0)

τ
= −f1

τ
(2.71)

τ expresses the relaxation time and formally is a function of the crystal momen-
tum, i .e., τ = τ(k). The time correlated with the rate of return to the equilibrium
distribution when the external fields, forces or thermal gradients are turned off is
the physical interpretation of the relaxation time approximation. When the fields
are turned off, the solution to Eq. 2.71 yields,

∂f

∂t
= −f − f0

τ
(2.72)

52



Chapter 2 2.3. Boltzmann Transport Theory

having the solution,

f(t) = f0 + [f(0)− f0]e
− t
τ (2.73)

f(0) is the distribution function at time t = 0 whereas, as stated previously,
f0 is the equilibrium distribution. It can be easily seen that the solution to Eq.
2.71 results in a Poisson distribution, which signifies that the collisions relax
the distribution function exponentially to f0 having a time constant τ . With
these approximations, the Boltzmann equation can now be solved to obtain the
distribution function and consecutively the number and current density can be
calculated. Since the current density j(r, t) is expressed as,

j(r, t) =
e

4π3

∫
v(k)f(r,k, t)d3k (2.74)

where the crystal momentum ~k acts as the momentum p in determining a vol-
ume in phase space. Every domain of the size of Planck’s constant in phase space
can contain only one spin up and one spin down electron. The carrier density is
therefore clearly expressed by the integration of the distribution function over
k-space,

n(r, t) =
1

4π3

∫
f(r,k, t)d3k (2.75)

where d3k is a domain of 3D wavevector space. The velocity of a carrier with
crystal momentum ~k is associated with the energy dispersion E(k) and is given
by,

v(k) =
1

~
∂E(k)

∂k
(2.76)

The Fermi distribution function, which describes the equilibrium state, is,

f0(E) =
1

1 + e
E−EF
kBT

(2.77)

where EF is the Fermi energy and kB is the Boltzmann constant.

2.3.2.1 Electrical transport parameters

Consider an applied electric field E along the x−direction, with no magnetic
fields and no thermal gradients. The electrical conductivity tensor σ is computed
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explicitly from the equation,

j = σ · E (2.78)

using j from eq. 2.74, v from Eq. 2.76 and the distribution function f(r,k, t)

from the Boltzmann equation 2.70.
The first term in Eq. 2.70 vanishes because the dc field E applied has no

time dependence. Since we have assumed that there are no thermal gradients,
the second term in Eq. 2.70 also vanishes,

v · ∂(r,k, t)

∂r
' ∂f0

∂r
=
∂f0

∂T

∂T

∂r
= 0 (2.79)

The third term in Eq. 2.70 can now be expressed as,

k̇ · ∂f(r,k, t)

∂k
=
∑
α

k̇α
∂(r,k, t)

∂kα
(2.80)

The summation α runs over each of the vector components. The equation of
motion yield, ~k̇ = eE along with

∂f(r,k, t)

∂k
=
∂(f0 + f1)

∂k
=
∂f0

∂E

∂E

∂k
+
∂f1

∂k
(2.81)

The last term in the above equation vanishes because we assume a linearized
Boltzmann equation and thus only the leading term, ∂f0

∂ ~v(k) is retained. In the
case of an applied dc electric field having no thermal gradients, the linearized
Boltzmann equation is given by,

k̇ · ∂f(r, k, t)

∂k
=
φ

τ

∂f0

∂E
= −f1

τ
. (2.82)

Since, f1 here is defined as f1 = −φ
(
∂f0

∂E

)
, it explicitly demonstrates the

(
∂f0

∂E

)
dependence. We now we substitute the equation of motions, ~k̇ = eE and Eq.
2.81 in Eq. 2.82, [

eE

~

(
∂f0

∂E

)]
· [~v(k)] =

φ(k)

τ

(
∂f0

∂E

)
(2.83)

such that, φ(k) = eτE · v(k). We correlate φ(k) with f1(k) by,

f1(k) = −φ(k)
∂f0(E)

∂E
= −eτE · v(k)

∂f0

∂E
(2.84)
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The current density is then obtain from the distribution function f(k) by com-
puting the average value of 〈nev〉 over all momentum space,

j =
1

4π3

∫
ev(k)f(k)d3k =

1

4π3

∫
ev(k)f1(k)d3k (2.85)

since 1
4π3

∫
ev(k)f0(k)d3k = 0, no net current flows in the absence of a static

electric field which is the equilibrium condition. Substituting Eq.2.82 into Eq.
2.74 yields,

j = −e
2E

4π3

∫
τv · v∂f0

∂E
d3k (2.86)

A comparison between the Eq.2.86 and Eq. 2.78 yields,

σ = − e2

4π3

∫
τv · v∂f0

∂E
d3k (2.87)

where σ is the conductivity tensor which is a symmetric second rank. More
explicitly, the components of the conductivity (Eq. 2.87) can be expressed as,

σαβ(T, µ)

τ
=

1

V

∫
e2vα(i,k) vβ(i,k)[

−∂f0(T, ε)

∂E
]dε (2.88)

Where V is the volume of the unit cell. The temperature dependence is derived
from the ∂f0

∂E term and the evaluation of the integral depends on the E(k) and v

relations. Analogous to the density of states, the energy projected conductivity
tensors can be expressed by,

σαβ(E) =
1

N

∑
i,k

σαβ(k, i)
δ(E − Ei,k)

dE
(2.89)

where N is the number of k sampling points.
The Seebeck tensor is defined by

Si,j = Ei(∇jT )−1 = (σ−1)αivαj (2.90)

where the velocity tensor is derived from the conductivity tensor,

vαβ(T, µ) =
1

eTµ

∫
σαβ(E)(E − µ)

[
− ∂fµ(T,E)

∂E
dE

]
(2.91)
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The Seebeck coefficient is then calculated using,

Sαβ(T, µ) =
1

eT

∫
vα(i,k)vβ(i,k)(ε− µ)[

−∂fµ(T,ε)
∂ε ]dε∫

vα(i,k)vβ(i,k)[
−∂fµ(T,ε)

∂ε ]dε
(2.92)

where, µ is the chemical potential. In semi-metallic materials where the transport
occurs only near the Fermi level, one can use the Sommerfeld expansion of 2.92
to obtain,

S = −π
2k2
BT

3e

d

dE
[ln σ(E)]

∣∣∣
E=EF

(2.93)

Eq. 2.93 is known as the Mott formula [149]. The derivation can be found in
Appendix B

2.3.3 Solving Boltzmann equations for lattice
transport coefficient

For the spatially non-uniform phonon distribution, the Boltzmann equation is
expressed as, (

∂N

∂t

∣∣∣
drift

)
+

(
∂N

∂t

∣∣∣
scattering

)
= 0 (2.94)

here, N is the number of phonons in each mode. Generally, one performs the
differentiation in the relaxation time approximation expressing the scattering
term as

(
∂N
∂t

∣∣∣
scattering

)
= −n

τ , which leads to [150],

n = −τ(v∇T )
∂N0

∂T
. (2.95)

The Bose-Einstein distribution function is defined here as N0 = 1

e
~ω
kBT

−1
and n is

the non-equilibrium part of the phonon distribution function, N = N0 + n. ∇T
and v is the temperature gradient and phonon group velocity, respectively. The
heat flux for a 2D material is obtained from the expression [150],

Q =
∑
s,q

v(s,q)~ω(q)n[q, ω(q)] (2.96)
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where n(ω,q) is the number of phonons in the heat flux and v~ω is the energy
carried by a phonon. Substituting Eq. 2.95 in Eq. 2.96, the heat flux can be
expressed as,

Q = −
∑
β

(∇T )β
∑
s,q

τvβ(s,q)
∂N0

∂T
v(s,q)~ω(q). (2.97)

The macroscopic definition of the lattice thermal conductivity is derived from,

Qα = −καβ(∇T )β hLxLy (2.98)

where καβ is the lattice thermal conductivity tensor, Lx is the sample width, Ly is
the sample length and h is the sample height. Comparing Eq. 2.97 and Eq. 2.98,
we obtain the following expression for the lattice thermal conductivity tensor,

καβ =
1

hLxLy

∑
s,q

τ(s,q)vα(s,q)vβ(s,q)
∂N0(ω)

∂T
~ω(q). (2.99)

2.3.3.1 Real space super cell approach

In this method the third order anharmonic IFCs are calculated from a set of
displaced supercell configurations depending on the size of the system, their
symmetry group and the number of nearest neighbour interactions. The third
order anharmonic IFCs are constructed from a set of third-order derivatives of
energy, calculated from these configurations using the plane wave method [139].
The phonon lifetimes are calculated from the phonon BTE which are limited by
phonon-phonon, isotropic impurity and boundary scattering [151]. The three-
phonon scattering rates are incorporated in this method, as implemented in the the
ShengBTE code [152]. Elaborate details on the work-flow of the three-phonon
scattering rates can be found in reference [152]. The thermal conductivity matrix
καβL is given as,

καβL =
1

kBT 2ΩN

∑
s

f0(f0 + 1)(~ωs)2vαs τ
0
s (vβs + ∆β

s ). (2.100)

καβL is then diagonalized to obtain the scalar lattice thermal conductivity κL in
a preferred direction in the xy plane. In Eq. 2.100 Ω is the volume of the unit
cell, N denotes the number of q-points in the Brillouin zone sampling. f0 =
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1/(e~ωs/kBT − 1) is the Bose-Einstein distribution function, τ 0
s is the relaxation

time for the mode s with phonon frequency ωs, vs is the phonon group velocity,
and ∆s denotes the measure of how much associated heat current deviates from
the relaxation time approximation. Mathematically, ∆s and τ 0

λ is expressed as
[152],

∆λ =
1

N

∑
i=+,−

∑
λ′λ′′

Γi
λλ′λ′′

(ξλλ′′Fλ′′ − ξλλ′Fλ′)

+
1

N

∑
λ′

Γλλ′ξλλ′Fλ′ (2.101)

1

τ 0
λ

=
1

N
(

+∑
λ′λ′′

Γ+
λλ′λ′′

+
1

2

−∑
λ′λ′′

Γ−
λλ′λ′′

+
∑
λ′

Γλλ′) (2.102)

here λ(λ
′
,λ
′′
) represents the phonon branch index s(s

′
,s
′′
) and wave vector q(q

′
,q
′′
)

while ξλλ′ and Fλ is short-hand for
ω
λ
′

ωλ
and τ 0

s (vβs + ∆β
s ) respectively. The three-

phonon scattering rates denoted by Γi
λλ′λ′′

(i = +,−) and the scattering probabil-
ities due to isotopic disorder denoted by Γλλ′ have the following expressions,

Γ±
λλ′λ′′

=
~π

4ωλωλ′ωλ′

[
f0(ω

λ
′ )−f0(ω

λ
′′ )

f0(ω
λ
′ )+f0(ω

λ
′′+1)

]
×
∣∣Vλλ′λ′′ ∣∣2δ(ωλ ± ωλ′ + ωλ′′) (2.103)

Γλλ′ =
πω2

2

∑
i

fs(i)

[
1− Ms(i)

M(i)

]2

×
∣∣e∗λ · eλ∣∣2δ(ωλ − ωλ′). (2.104)

Where V ± is the scattering matrix element and is expressed in terms of the
anharmonic IFCs (Φ), eigen functions (e) and mass (M ) of an atom as

Vλλ′λ′′ =
∑
i,j,k

∑
αβγ

Φαβγ
ijk e

α
λe

β

λ′
eγ
λ′′√

MiMjMk

. (2.105)

In the above expression, i, j, k run over the atomic indices and α, β, γ are the
Cartesian coordinates. M =

∑
s fs(i)Ms(i) is the average of masses (Ms(i)) of

isotopes s of the atoms i having a relative frequency fs. Γ+(−) represents the
absorption (emission) processes. A phonon which is a result of the absorption
process is a combined energy of two incident phonons, i.e. ωλ + ωλ′ = ωλ′′ .
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Similarly, the emission process depicts the energy of an incident phonon being
separated among two phonons, ωλ = ωλ′ + ωλ′′ . Therefore in eq.2.103 it is easy
to see that the Dirac delta function, δ(ωλ± ωλ′ + ωλ′′), imposes the conservation
of energy in the absorption and emission processes.

It should be noted that the relaxation times is calculated in the ShengBTE
code using an iterative approach by solving the phononBTE starting with the
zeroth-order approximation, ∆λ = 0, also known as the RTA solution. These
iterations continue till two successive values of κL differ by 10−5 Wm−1K−1.
The interatomic third-order force constants (IFCs) are calculated using a real
space supercell approach.

Length dependent thermal conductivity is then calculated by taking into
account only phonons with a mean free path (MFP) below a certain threshold
value. This is done by calculating the cumulative lattice thermal conductivity with
respect to the allowed MFP. Furthermore, advanced experimental techniques
have recently been proposed to measure the cumulative κL as a function of
phonon mean free path [153, 154, 155].

In order to compare our calculations with experimental measurements, we fit
the cumulative length dependent thermal conductivity in the form [152],

κL(L) =
κLmax
1 + L0

L

. (2.106)

where L0 is a fitting parameter. κL corresponding to a given length is calculated
over a temperature range using Eq. 2.106 and the thermodynamic limit of the
thermal conductivity (κLmax) is the value of κL as L→∞.

2.3.3.2 Callaway-Klemens approach (Analytical and numerical
solutions)

In the Callaway-Klemens’s [156, 157] approach which has been modified by
Nika el al [158], the expression for thermal conductivity along x and y directions
for two-dimensional layered materials, with relaxation time approximation (RTA)
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to BTE and isotropic approximation to phonon dispersion is given by,

κ =
1

4πkBT 2Nδ

×
∑
s

qmax∫
qmin

[~ωs(q)]2v2
s(q)τU,s(q)

e
~ωs(q)
kBT

[e
~ωs(q)
kBT − 1]2

qdq, (2.107)

where kB is the Boltzmann constant, ~ is the reduced Planck constant, T is
the absolute temperature, N is the number of layers, δ is the distance between
two consecutive layers, ωs(q) and vs(q) are the phonon frequency and velocity
corresponding to the branch s at phonon wave vector q. The wave vector corre-
sponding to the Debye frequency and low cut-off frequency are denoted by qmax
and qmin, respectively. The method to calculate the low cut-off frequency will be
discussed shortly. τU,s is the three-phonon Umklapp scattering corresponding to
branch s at the wave vector q expressed as,

τU,s =
Mv2

s(q)ωD,s
γ2
s(q)kBTωs(q)

2
. (2.108)

Here, M is total mass of the atoms in the unit cell, γs(q) is the mode and wave
vector dependent Grüneisen parameter.

The validity of the form of relaxation time in the Umklapp scattering in eq.
2.108 for a 2D and 3D material was originally proposed by Klemens et. al.[159],
where phonons were treated by a two-dimensional Debye model. This sets up a
mode for the thermal conductivity in terms of a 2D phonon gas. On the basis of
the phonon frequency dependence of the specific heat and mean free path, the
form of τU,s in eq. 2.108 is valid for both 2D and 3D. Moreover, the calculations
by Shen et. al. [160] use the same form to describe the relaxation time of the
Umklapp process for graphene and their results, when τU,s is multiplied by a
factor of 3, are consistent with the paper of Lindsay et. al. [151] which solves
the phonon BTE beyond the RTA. Since eq. 2.108 cannot determine whether the
U-processes are forbidden or not, the factor of 3 is added due to the symmetries
seen in graphene which is explained in detail later.

Grüneissen parameter (γs(q)) and the Debye frequency (ωD,s) corresponding
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to the branch s is calculated by solving,

A

2π

ωD,s∫
0

q
∣∣∣ dq
dω

∣∣∣dω = 1, (2.109)

where A is the area of the unit cell.

Figure 2.3: The acoustic (A) and optical (O) phonon modes defined along their polarization relative to the Γ K
direction (top) and Γ M(bottom) directions for a two-dimensional hexagonal system such as graphene and boron
nitride. The modes are associated with the in-plane longitudinal (L) and transverse (T) atomic displacements as
well as the out-of-plane (Z) atomic displacements. Figure adapted from Reference [18].

The acoustic branches for in-plane modes for MLG, BLG, SLBN, BLBN,
5LBN and Bulk-hBN are linear whereas the out-of-plane acoustic mode have a
quadratic behavior and hence for a simplified analytical solution we express the
phonon frequencies as,

ωs(q) = vsq ⇒ [s = LA,TA] (2.110)

= αq2 ⇒ [s = ZA] (2.111)

Substituting these values in Eq. 2.109, we find the Debye frequency is given by

ωD,s = 2vs

√
π

A
⇒ [s = LA,TA] (2.112)

=
4πα

A
⇒ [s = ZA] (2.113)

The in-plane and out-of-plane phonon modes related to the atomic displacements
are shown in Fig. 2.3.
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The mode dependent anharmonic (Grüneissen) parameters were calculated
by applying a biaxial strain of ± 0.5% to each of the structures.

γs(q) =
−a0

2ωs(q)

δωs(q)

δa

≈ −a0

2ωs(q)

[w+ − w−
da

] (2.114)

Fig. 2.4 shows that the Grüneisen parameter for the in-plane modes have a slight
deviation from its average value along the Γ to K direction. Therefore assuming
a constant value for γs (s=LA,TA), Nika et al [158] have derived the following
analytical solution for κ associated with a particular mode s.

κs =
MωD,sv

2
s

4πT (Nδ)γ2
s

[ln(ex − 1) +
x

1− ex
− x]

∣∣∣∣∣
~ωD,s
kBT

~ωmin,s
kBT

(2.115)

Since there is no ZO′ branch in SLBN, the low bound cut-off frequency cannot
be introduced in analogy to that of bulk graphite. One can however avoid
the logarithmic divergence by restricting the phonon mean free path on the
boundaries of the sheets [150]. This is accomplished by selecting the mode
dependent low cut-off frequency (ωs,min) from the condition that the mean free
path cannot be greater in size than physical length L of the sheet, i.e,

ωs,min =
vs
γs

√
MvsωD,s
kBTL

(2.116)
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Figure 2.4: The calculated Grüneisen (γ) parameters of
all the modes along the Γ to K direction of the 2D Bril-
louin zone of the hexagonal unit cell for MLG(left) and
BLG(right). The maroon dashed lines are the best con-
stant and inverse squared wave dependent fits to the in-
plane (LA,TA) and out-of-plane (ZA) γ parameters, re-
spectively.

In the spirit of in-plane thermal con-
ductivity study we extend our calcula-
tions to find an analytical form to the
flexural phonons modes since the con-
tribution from these branches are vital
to the total thermal conductivity. Un-
like for the case of in-plane modes, the
Grüneisen parameters for the acoustic
out-of-plane ZA modes have a strong
q-dependence. From Fig. 2.4 it can be
seen that the expression
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γZA =
β

q2
, (2.117)

is a very good fit to the actual wave vector dependent Grüneisen parameters.
This inverse square wave dependence behavior can be understood by studying
the phonon dispersion under positive and negative strain. Consider the phonon
dispersion of the ZA mode under a biaxial strain. The phonon dispersion for
the ZA mode just shifts by a small constant. For example, in the case of h-
BN, P. Anees et al. [161] have plotted the phonon dispersion under positive
and negative strain. Therefore the phonon dispersion with biaxial strain would
become ω± = αq2 ± δa. Where δa is a small constant. Substituting these values
in Eq. 2.114, we get, γ ∝ −2δa

α ∝ −1
q2 .

Substituting eq. 2.117 and eq. 2.111 into eq. 3.12 and making a transforma-
tion, x = ~ω

kBT
, the analytical form for κZA is given by

κZA =
2MωDk

3
BT

2

πNδβ2~3α

~ωD
kBT∫
0

x4 ex

[ex − 1]2
dx

=
2MωDk

3
BT

2

πNδβ2~2α
G
(~ωD
kBT

)
, (2.118)

where the function G(z) is expressed as

G(z) =
−4π4

15
+

ezz4

1− ez
+ 4z3ln(1− ez)

+ 12z[zLi2(e
z)− 2Li3(e

z)] + 24Li4(e
z). (2.119)

Here, the polylogarithm function is defined as, Lin(z) =
∞∑
i=1

zi

in .

The total phonon relaxation time τtot comprises of the contributions from, (i)
the phonon-phonon Umklapp scattering, (ii) the boundary scattering, and (iii)
scattering due to point defects. The phonon-phonon Umklapp scattering rate
(τU ) for a given mode s is given by Eq. 2.108 [157, 156, 158].

The rough boundary scattering rate are shown to be given by [158],

τB,s(q) =
d

vs
(
ωs(q)

) 1 + p

1− p
, (2.120)

where, d is the width of the sample. The specularity parameter (p) depends on
the roughness of the edges. For example an ideal smooth sample would have a
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specularity parameter p = 1. The scattering rate due to point defects is written
as[158],

τP,s(q) =
4vs
(
ωs(q)

)
S0Γ0qs

(
ωs(q)

) 1

ω(q)2
s

, (2.121)

where, Γ0 is a dimensionless parameter to determine the strength of the point-
defect scattering, given by Γ0 =

∑
i fi(1 −

Mi

M
), where M =

∑
iMifi is the

average atomic mass, fi is the fractional concentration of the impurity atoms
with mass Mi. The cross-sectional area per atom of the lattice is denoted by S0.
Each of the mentioned scattering rates can be combined to calculate the total
phonon relaxation time which is given by the Matthiessen’s rule [162, 163],

1

τtot,s(q)
=

1

τU,s(q)
+

1

τB,s(q)
+

1

τP,s(q)
. (2.122)

We now extend our calculations with point defects and specularity parameters
for values of p less than 1. With these approximations, Eq. 3.12 for the LA,TA
and ZA mode can be easily shown to be,

κLLA,TA =
1

C0

ωD∫
ωmin

~2ω3τtot
e

~ω
kBT

[e
~ω
kBT − 1]2

dω, (2.123)

κLZA =
2

C0

ωD∫
ωmin

~2ω3τtot
e

~ω
kBT

[e
~ω
kBT − 1]2

dω, (2.124)

where C0 is given by C0 = 4πkBT
2(Nδ) and the separate relaxation times for

the in-plane and out-of-plane modes with these approximation become,

τU,s(ω) =
C1

ω2
; C1 =

Mv2ωDs

γ2kBT
⇒ [s = LA,TA] (2.125)

= C2ω ; C2 =
4MωDs

β2αkBT
⇒ [s = ZA] (2.126)

τB,s(ω) = C3 ; C3 =
d

v

1 + p

1− p
⇒ [s = LA,TA] (2.127)

=
C4√
ω

; C4 =
d

2
√
α
⇒ [s = ZA] (2.128)

τP,s(ω) =
C5

ω3
; C5 =

4v2

S0Γ0
⇒ [s = LA,TA] (2.129)

=
C6

ω2
; C6 =

8α

S0Γ0
⇒ [s = ZA] (2.130)
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2.4 Molecular Dynamics4

2.4.1 Introduction

Molecular dynamics (MD) is a computer simulation technique for understanding
the physical movements of a many body system such as atoms and molecules,
widely used in material science and physical chemistry. The atoms in MD
simulations generally follow the classical equations of motions, i.e., mi

d2ri
dt2 = Fi,

where mi is the mass of the ith atom at position ri and Fi is force acting on
it. The goal of MD simulations are to solve these equations from the initial
position, velocity of the atoms, and the forces of the interactions between them
numerically and to derive important information from the atomic trajectories.
There are two types of MD simulations, the ab-initio MD [164] and classical
MD [165, 166]. In the ab-initio MD technique, the force is computed on the
nuclei from electronic structure calculations such as density functional theory
(DFT) calculations. However, this technique is only practical for relatively
smaller systems because of its challenging computation load. In the second
method, which is used in this thesis, the classical MD, the forces operating
on the atoms are extracted from empirical inter-atomic potentials (EIPs), Fi =

−∇riV (r1, r2, · · · , rN), whereN is the total number of atoms. The computation
challenge is greatly decreased in this technique because the electrons are not
accounted in the calculations therefore making it possible to perform large-scale
simulations. The simulation cells used in all our molecular dynamic studies are
shown in Fig. 5.2.

2.4.2 Tersoff potential

The Tersoff potential is a three-body functional involving explicitly the angular
contribution of the force. The essential assumptions are that the dynamics are
treated classically, the atoms are spherical and chemically inert. The interatomic
potential energy described in this method is similar to the Taylor expansion of

4This theory has been implemented in Chapter 5
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the potential as a function of the atomic positions,

E =
∑
i

V1(ri) +
∑
i<j

V2(ri, rj) +
∑
i<j<k

V3(ri, rj, rk) + · · · (2.131)

where V1, V2, V3 are the one, two and three body potentials. Considering just
the interatomic forces would result in the vanishing of the first term since
it is associated with an external force. The pair potential term (V2) alone is
convenient for closed packed structures but would not be appropriate for strongly
covalent systems. The detailed form of the pair potential term varies from a
Lennard-Jonnes type, 1

rn interaction to a Morse type, e−αr interaction or a merge
between them. Therefore a cut-off function must be introduced to confine the
extent of the potential which would in turn reduce the computational load. The
implementations of the N−body potential were discarded by J. Tersoff [167]
and suggested an approach coupling efficiently two body and higher multi atom
correlations into the method. J. Tersoff defined a pair potential in which the
strength depended on its environment, i.e., an atom having many neighbors
formed relatively weaker bonds with respect to atoms with few neighbors. The
Tersoff potential were initially calibrated for silicon [167] and carbon [168]. The
Tersoff potential is expressed as,

E =
∑
i

Ei =
1

2

∑
i6=j

Vij (2.132)

where Vij has the following form,

Vij = fC(rij)[fR(rij) + bijfA(rij)] (2.133)

Here the potential energy consists of a site energy Ei and a bonding energy
Vij. The distance between atoms i and j are written as rij. The attractive and
repulsive pair potential terms are denoted as fA and fR, respectively, expressed
as,

fR(r) = Ae−λ1r (2.134)

and

fA(r) = −Be−λ2r (2.135)
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The smooth cut-off function has the expression,

fC =


1, r < R−D
1

2
− 1

2
sin

[
π

2

r −R
D

]
,R−D < r < R +D

0, r > R +D

(2.136)

Parameters R and D are not systematically optimized but are selected so as to
only involve the first neighbor shell for a selected structure. The cut-off function,
fC , has values that decrease from 1 to 0 in the range R−D < r < R +D. An
essential characteristic of this potential is the existence of the bij term. It is this
term that makes the strength of the potential depended on its environment. The
form of the term bij is expressed as,

bij =
1

(1 + βnζnij)
1

2n

(2.137)

where ζij is written as,

ζij =
∑
k 6=i,j

fC(rij)g(θijk)e
[λ3

3(rij−rik)3] (2.138)

The term ζ describes the effective coordination number of an atom i, i.e., the
number of nearest neighbors which takes into account the relative distance
between two neighbors, rij − rik and the bond angle, θ. and g(θ) is written as,

g(θ) = 1 +
c2

d2
− c2[

d2 +
(
h− cos(θ)2

)] (2.139)

The sharpness of an angle is dictated by the parameter d while c describes
the strength of the angular effect. The function g(θ) has its minimum value at
h = cos(θ). These potential parameters are generally chosen by fitting theoretical
and experimental data obtained from practical configurations such as cohesive
energy, lattice constants, bulk modulus, etc.

2.4.3 Equilibrium Molecular Dynamic simulations

There is no net macroscopic flow of energy or matter in the equilibrium molecular
dynamics (EMD). In this approach the lattice thermal conductivity is obtained
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from the Green-Kubo formula derived from the linear response theory [169, 170],

καβ =
1

kBV T 2

∫ ∞
0

〈Jα(t)Jβ(0)〉 dt (2.140)

The Cartesian directions are denoted by α and β. kB, V, J are the Botlzmann
constant, volume and heat current, respectively. The integral is recognised as the
heat current autocorrelation function (HCAF). The heat current vector is defined
as,

J(t) =
d

dt

∑
i

ri(t)Ei(t) =
∑
i

viEi +
∑
i

ri
d

dt
Ei, (2.141)

The time-dependent atomic position and site energy are denoted by ri and Ei,
respectively. The

∑
i viEi term is identified with the convection heat transfer

which generally occurs in fluids. The conduction is described by
∑

i ri
d
dtEi term

which is dominant in solids [170]. For EIPs consisting of either two or three
body term and if only the conduction term is considered, the heat current then
can be written as [170],

J(t) =
1

2

∑
i,j

rij(Fij · vi) +
1

6

∑
i,j

(rij + rik)(Fijk · vi), (2.142)

The relative position of atom i with j is denoted by rij. The force which acts
on atom i derived from the two body potential involving atom i and atom j

is denoted by Fij. Similarly, the force which acts on atom i derived from the
three-body potential involving atoms i, atom j and atom k is denoted by Fijk.
Generally, a huge supercell is chosen as the simulation cell having periodic
boundary condition in all three directions. Similar to that done in DFT, fow low
dimensional materials, one has to create a large vacuum layer in the appropriate
direction to avoid interaction between the periodic atoms (See Fig. 5.2(b)) which
in turn mimics the free surface.

Before describing how MD simulations are run, one must define the nomen-
clature for the different ensembles. (i) In the microcanonical ensemble (NVE)
the system is isolated from its N particle (N), Volume (V) and energy (E). The
ensemble therefore relates to an adiabatic process having no heat exchange. (ii)
Often referred to as constant temperature MD, the canonical ensemble (NVT)
conserves the number of particles (N), volume (V) and temperature (T). The
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energy of Exothermic and Endothermic processes are exchanged with a thermo-
stat in NVT. (iii) For the isothermal-isobaric (NPT) ensemble, the total number
of particles (N), pressure (P) and temperature (T) are conserved. Therefore in
addition to a thermostat, a barostat would be required in the NPT ensemble. The
MD simulations are initially run in the NPT ensemble. When the system reaches
thermal equilibrium and the strain is released, the MD simulation is followed
by the run in NVT and NVE ensembles. The heat current is then obtained from
the NVE ensemble and the thermal conductivity is calculated using Eq. 2.140.
In comparison to the non-equilibrium molecular dynamic (NEMD) simulation,
EMD simulations are a better choice for the intrinsic simulation because there is
only a weak size truncation effect along the thermal transport direction. However,
this weak size effect can be minimized by increasing the number of atoms in the
simulation cell.

2.5 Regular solution model and Monte Carlo
simulations5

2.5.1 Regular solution model

Figure 2.5: The arm-chair (left panel) and zig-zag interface created between h-BN and graphene within the
supercell. The 16 × 1 armchair and 8 × 2 zigzag supercells generated by the orthorhombic unit cells are shown
by the solid black lines. The row used for replacing C atoms by BN atoms in two cases have been marked by the
black dotted boxes. The carbon, B and N atoms are shown as white (light gray), red (dark gray) and black colored
balls.

A solution whose entropy of mixing is equal to that of an ideal solution
having the same composition, however, is not ideal since the enthalpy of mixing
is non-zero. Such a solution is termed as the regular solution. The entropy of
mixing is the same that of an ideal solution having the same composition because

5This theory has been implemented in Chapter 6
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the random mixing is without strong specific interactions,

S = −kB
∑

xlnx, (2.143)

where the sum runs over all the configurations. In this thesis, we study the
phase stability of C2x(BN)1−x treating the carbon dimers and boron-nitride as
two-different components. For a two-component system, the entropy of mixing
can therefore be written as,

S = −2kB[x lnx+ (1− x) ln(1− x)] (2.144)

where kB is the Boltzmann constant, x is the concentration of carbon and there-
fore the concentration of the BN dimers is given by 1 − x. The factor of two
in Eq. 2.144 arises due to the mixed occupancy of the two sub-lattices. The
concentration and temperature dependent free energy, F (T, x) is expressed as,

F (T, x) = ∆E(x)− TS. (2.145)

where ∆E(x) is the concentration dependent cohesive energy or mixing energy
because it is related to the energies of the alloy related to the energies of pristine
graphene and boron nitride. The tendency to phase separate is dictated by the
positive value of the mixing energy while the negative values of ∆E indicate the
tendency to form a homogeneous solid solution. For each concentration x, the
mixing energy per formula unit (f.u.) of the system using DFT, is expressed as,

∆E = E{(C2)x(BN)1−x, a(x)}
− [xE(C, aC) + (1− x)E(hBN, ahBN)], (2.146)

where where E{(C2)x(BN)1−x, a(x)} is the total energy per formula unit of
(C2)x(BN)1−x at the equilibrium in-plane lattice constant a(x); E(C, aC) and
E(hBN, ahBN) are the total energies per formula unit of pristine graphene and
h-BN at the equilibrium in-plane lattice constants aC and ahBN, respectively. The
critical temperature within the regular solution model can be calculated from the
condition, d

2F
dx2 = 0 at x when dF

dx = 0,

d2F

dx2
= 0

∣∣∣∣∣
x(dFdx=0)

(2.147)
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2.5.2 Monte Carlo simulation

2.5.2.1 Infinite Sheets

DFT calculations involve large computer time even for a modestly small num-
ber of atoms and can be almost impossible for calculations involving a large
number of atoms. MC simulations are ideal to deal such situations. It is also a
convenient method to know what kind of interfaces are formed if the system is
allowed to evolve without any constraint. We therefore employed Monte Carlo
simulations to study the segregation of BN domains on graphene and calculate
it’s solid solution phase from the spinodal line. The Monte Carlo Simulations,
within the framework of Metropolis [171] algorithm, are based on the following
Hamiltonian, defined on a bond basis with bond energies extracted out from DFT
calculations.

H =
1

2

N∑
i=1

3∑
j=1

Eb(αi, βj) (2.148)

where, N is the total number of atoms in the simulation cell, Eb(αi, βj) is
the bond energy between αi and βj. αi is the atom at position i, βj is the
nearest neighbor atom. α and β can be either C, B or N. The factor of 2 in the
denominator accounts for double counting. In order to estimate Eb(αi, βj) for
different kinds of bonds, which can be CC, BN, CB or CN, we first considered
an isolated pair of CC, BN, CB or CN atoms in which the C atoms are passivated
with hydrogen atoms. We calculated the energy of this H-bonded pair of atoms,
which is denoted as Esp3

. We then calculated the energy of the hexagonal infinite
sheets built up by same pair of atoms, which would be a graphene or BN sheet if
the pair of atoms is CC or BN. For rest of the combinations, these are artificial
computer-generated sheets. Energy of this infinite sheet is denoted as Einf .
Considering the case of graphene, and the fact that energy of the infinite sheet in
the unit cell is given by the energy of two isolated C atoms (Ciso) and the bond
energy of C-C, Eb(CC), we have,

Einf = 2Ciso + nEb(CC) (2.149)

where n is the number of bonds on each carbon atom. Similarly the energy
of hydrogen passivated C-C pair can be also expressed as a sum of energy of
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isolated atoms and bond energies. Thus,

Esp2
= 2Ciso + Eb(CC) + 4Hiso + 4Eb(CH) (2.150)

taking into account of the fact that there are 6 hydrogen atoms required to
passivate the two carbon atoms completely. From the above two equations, one
can arrive at a definition of CC bond energy as,

Eb(CC) =
Einf − (Esp2

− 4Hiso − 4Eb(CH))

n− 1
(2.151)

The bond energies of other pairs can be defined similarly.

2.5.2.2 Nanoribbons

Having computed the bond energies in a DFT derived way which are the input
to the MC simulation for the infinite sheet of (C2)x(BN)1−x, we proceed to
calculate the same for cases when the systems are nanoribbons. As can be
anticipated, the bond energies of the pair of atoms positioned near the edge of
the ribbon will be different from that inside the ribbon. This effect may also
extend to atoms adjacent to the edge. Thus to compute the position-dependent
bond energies, we proceed as follows. We passivate the edges of the nanoribbon
with hydrogen atoms. For zig-zag (arm-chair) edged ribbon there are 2 (4) such
H atoms in the unit cell. We built up the nanoribbons of increasing width by
adding rows of atoms along the lateral dimension of the ribbon. At each stage,
two rows were added which amounts to one unit cell (u.c.). Considering the
graphene nanoribbon with smallest width which consists of two rows of atoms,
the energy of the H-passivated system is given by

E2row = 4Ciso + 7Eb1(CC) + 2Hiso + 2Eb(CH) (2.152)

where Eb1(CC) is the CC bond energies of the carbon atoms belonging to the
smallest possible nanoribbon. From knowledge of DFT energies for E2row, Ciso,
Hiso, Eb(CH), the bond energy Eb1(CC) is estimated. Adding two additional
rows of carbon atoms lead to the energy given by,

E4row = 8Ciso + 8Eb1(CC) + 7Eb2(CC) + 2Hiso + 2Eb(CH) (2.153)
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Inputting the estimate of Eb1(CC obtained from previous calculation of E2row

gives the estimate ofEb2(CC) which is the CC bond energies of the carbon atoms
immediately adjacent to rows belonging to the edges. This process is continued
to extract the row-dependent bond energies in the nanoribbon geometry. The
bond energies for each of the dimers in an infinite sheet and nanoribbons are
tabulated in Table 6.3.
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Chapter 3

Thermoelectric transport properties of
monolayer (MLG) and bilayer graphene
(BLG)1

3.1 Introduction

The experimental works carried out by various groups such as Kim et al [8],
Geim et al[172], Ong et al [173], Nam et al [174] and Wang et al [60] on
gate-dependent electron transport properties of MLG and BLG have motivated
us to carry out computational studies based on first-principles calculations of
MLG-doped hexagonal boron nitride (h-BN) and pure BLG under the influence
of an electric field, since there is a direct correspondence between gate voltage
and chemical potential. It is observed that S is strongly dependent on the amount
of doping in the case of MLG. A marked increase of S is observed when an
electric field is applied perpendicularly to the plane of the bilayer graphene
sheets.

A further motivation to study the effects of impurity scattering on graphene
sheets was provided by a recent paper by Ghahari et al [175], which reported

1Based on publications by R D’Souza, S Mukherjee, Physical Review B 95, 085435 (2017) &
Enhancement of thermoelectric figure-of-merit of Graphene upon BN-doping and sample length reduction
(Manuscript submitted), R D’Souza, S Mukherjee.
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an enhanced Seebeck coefficient in graphene due to scattering. We have used
a tight-binding model for graphene with impurities and solved the Boltzmann
transport equations for electrons to study the effect of impurities on electrical
conductance. Our study used a large k mesh to capture correctly the enhancement
of the Seebeck coefficient and a constant decrease in electrical conductivity
due to doping and decrease in mobility by an order of magnitude as observed
experimentally [175, 70, 7].

Further, we have reexamined the lattice thermal conductivity in MLG and
BLG using the lattice Boltzmann transport method [152] employing the phonon
bandstructure calculated from first-principles DFT [139]. Our calculated phonon
dispersion agrees with previous results [176, 158, 177, 178, 179], whereas the lat-
tice thermal conductivity shows quantitative agreement with recent experimental
data [23].

Allen [180] has shown that the Callaway method underestimates the suppres-
sion of the normal processes and has proposed an improved method [180] which
has been compared with the earlier iterative method for various materials [181].
However, this has been done only for three dimensional materials. There have
also been studies on the length dependence thermal conductivity of single layer
graphene using either a Monte Carlo simulation with a quadratic and linear fit to
the acoustic phonon modes [182] or the improved Callaway model [183, 184].

In all of these calculations, none of the relaxation times were calculated
beyond the relaxation time approximation (RTA) using an iterative method. All
length dependence calculations were done at room temperature. Moreover, those
calculations do not take the symmetry of the sample into account.

Studies using density functional perturbation theory (DFPT) to calculate
the thermal conductivity by solving the BTE exactly have been reported for
graphene [185], bilayer graphene [186], and, B and N doped graphene [187].
For example, Fugallo et al.[186] have solved the BTE exactly for MLG and BLG
using phonon-phonon scattering rates derived from DFPT. Their calculations
concentrate on the collective phonon excitations in comparison to the single
phonon excitations. Our calculations, on the other hand, deal with solving the
BTE beyond the RTA for each acoustic mode at various lengths and temperatures.
The temperature dependent behavior of each acoustic mode using the iterative
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method has been demonstrated by Lindsay et. al [185] only for MLG.
Earlier theoretical calculations on mode dependent lattice thermal conduc-

tivity for BLG have used the Tersoff potential [188] and hence a first-principle
calculation showing the length, temperature dependence of the lattice thermal
conductivity is of great importance. Concentration dependent lattice thermal
conductivity for B and N doped graphene calculations suggest a decrease in
lattice thermal conductivity [187], a feature similar to what is seen in our cal-
culations. Reproducing these previously reported results for graphene justifies
our predictions for the temperature dependent lattice thermal conductivity for
BLG. Merging the lattice thermal conductivity calculations, which are in good
agreement with previous theoretical and experimental data, with the calculations
of the electrical transport parameters ensure that our calculated figure of merit is
accurate for MLG, BLG, and BN doped MLG.

Here we provide an analytical solution using the Callaway-Klemens method
using a quadratic fit to the out-of-plane ZA and linear fit to the in-plane LA and
TA acoustic phonon dispersion, respectively, and show that the results are in
perfect agreement with experiments for MLG at room temperature only. The
Callaway-Klemen method overestimates κL at lower temperatures for MLG and
overestimates κL at all temperatures and lengths for BLG when compared to
experimental measurements. This motivated the present study on the thermal
conductivity by calculating the scattering rates for each acoustic mode beyond
the RTA using the first-principles iterative ShengBTE [152] method for MLG
and BLG at various lengths as well as temperatures and compare our results
with various experimental data. Moreover, using the scattering rates from the
ShengBTE method, we also calculate the length dependent κL for doped MLG
treating BN dimers as point defects.

Using the above accurate calculations of κL and our earlier calculated data
[22] on S and σ for these materials, we calculate the thermoelectric figure-
of-merit (ZT ) of MLG and BLG and study the effect of sample length and
BN-doping on ZT .

This chapter illustrates that all essential thermoelectric parameters of MLG
and BLG, both for electrical and lattice thermal transport, can be accurately
calculated using first-principles electronic and phonon band structure together
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with the Boltzmann transport theory. Our results are in excellent agreement with
available experimental data.

We demonstrate that the iterative ShengBTE method gives accurate results
of κL and its dependence on sample length for both MLG and BLG without any
fitting parameters in quantitative agreement with experimental data. We have also
found κL to decrease (∼ 70%) for MLG upon BN-doping. This leads to nearly
ten fold increase in the thermoelectric figure-of-merit (ZT ) upon BN-doping
and decrease in sample length.

3.2 Computational details

Density functional theory based electronic structure calculation
All electronic structure calculations were carried out using the density functional
theory (DFT) based plane-wave method, described in Section 2.1, as imple-
mented in the Quantum Espresso code [139]. A hexagonal unit cell has been
used in all these calculations. For the exchange-correlation potential, we use the
generalized gradient approximation (GGA) [128] and the core electrons were
represented by the ultrasoft pseudopotential [17]. Monkhorst–Pack k-point grids
[133] of 120× 120× 1 and 70× 70× 4 were implemented for monolayer and
bilayer graphene in the self-consistent calculations with a 40Ry kinetic energy
cutoff and a 160Ry charge density energy cutoff, respectively. The Kohn-Sham
equations are solved self-consistently to achieve an accuracy of 10−9 Ry in the
total energy. Plane-wave methods incorporate periodicity and hence in order to
avoid interaction between sheets we have a vacuum spacing of 22Å along the z
direction. The van der Waals interaction was included for multilayered systems.
Boltzmann transport theory for band electrons
The semiclassical Boltzmann transport theory (BTE), as described in section2.3.2,
applied to band electrons, as implemented in the Boltztrap code [31], was used
to calculate the transport properties. The BTE allows us to calculate the ther-
moelectric parameters along two orthogonal principal axes in the plane of the
two-dimensional graphene layers. Thus the calculated thermoelectric parameters
are taken as average over those along the principal directions. The energies and
their corresponding k-points were taken from the electronic structure calculations
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to deduce various transport parameters.
Transport properties from tight-binding method
In order to study the effect of dilute impurities in graphene on its electrical
conductivity, we have used a tight-binding (TB) model of graphene using the
method described in [189] (See Appendix A) for MLG and [9] for BLG. Thermo-
electrical parameters are then calculated from the Boltzmann transport equations
described above. The TB model allows us to calculate using a very large unit
cell containing hundred atoms or more with k pont grids of 120× 120× 1 for
MLG and 70 × 70 × 4 for BLG, not accessible by the DFT-based plane wave
methods.
Lattice thermal conductivity from BTE
We have used the phonon Boltzmann transport method, as described in section
2.3.3 to solve the Boltzmann transport equations for phonons starting from a set
of interatomic force constants (IFCs) obtained from the phonon dispersion ob-
tained using ab initio calculations [139], as implemented in the ShengBTE code
[152]. Lattice thermal conductivity calculations require the harmonic second-
order interatomic force constants (IFCs) as well as the anharmonic third-order
IFCs. The harmonic IFCs were calculated using density functional perturbation
theory. To attain the anharmonic IFCs, we use a real-space supercell approach.
The phonon Boltzmann transport calculates the converged set of phonon scatter-
ing rates and uses them to obtain the lattice thermal conductivity κL using the
expression shown in 2.100.

Lattice thermal conductivity calculations for MLG and BLG using ShengBTE
method, having two and four atoms in its unit cell, using third nearest neighbor
interactions for a 4 × 4 × 2 supercell, yields 72 and 156 displaced supercell
configurations, respectively. From a set of third order derivatives of energy,
calculated by implementing the plane-wave method on these displaced supercell
configurations, the third-order anharmonics IFCs are constructed. The number
of such configurations increase exponentially with increase in number of atoms
in the unit cell.
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3.3 Results and Discussion

3.3.1 Electron transport coefficients of MLG and BLG

3.3.1.1 Electrical conductivity and Seebeck coefficient of MLG
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Figure 3.1: (a) Scaled electrical conductivity (σ/τ ) as a function of energy at different temperatures, (b) σ/τ as a
function of charge carriers n at different T , (c) Seebeck coefficient(S) as a function of energy at different T and
(d) S as a function of T at two values of µ.

The calculated lattice constants for both MLG and BLG were 2.47 Å using
GGA and 2.46 Å using LDA, respectively. The interlayer separation for BLG
was found to be 3.32 Å.

As the precise numerical value of the electron relaxation time τ for graphene
is not known and can only be estimated from experiments [7], we show in Figs.
3.1(a,b) the scaled electrical conductivity σ/τ , calculated from the Bolzmann
transport theory (Eq. 2.88), as a function of energy and carrier concentration
in the temperature range 40K−300K, respectively. It is observed that close
to the Fermi energy εF , σ increases with increasing temperature but is almost
independent of T away from Fermi energy. This behavior has been reported by
Morozov et al. [6]. In Fig. 3.1(b) we observe σ of MLG to be proportional to
√
n where n is the charge carrier density.
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This
√
n behavior can be explained using a tight-binding model with an

energy expansion around the k point to get εF = ~vFkF , where ~ is the reduced
Planck constant, vF is the Fermi velocity and kF is the Fermi wavenumber. For
a 2-dimensional sample,

n =
k2
F

π
=

ε2F
π(~vF )2

(3.1)

Therefore the MLG’s density of states D(εF ) is given by,

D(εF ) =
dn

dε
=

2
√
n

~vF
√
π

(3.2)

Substituting this in the Einstein relation σ ∝ D(εF ), we obtain σ ∝
√
n. This

behavior has been experimentally confirmed for pristine graphene [5].
The Seebeck coefficient was calculated using the Mott relation Eq. 2.93

numerically and is plotted in Fig. 3.1(c) as a function of energy. Our calculated
form of S is in very good agreement with the experimental results reported by
Zuev et al [8]. Using a back-gated field effect transistor, the Fermi energy can
be tuned by adjusting the gate voltage. Zuev et al [8] have used this method for
a mesoscopic graphene sample using the formula S = −π2k2

BT
3e

1
σ
dσ
dVg

dVg
dE |E=Ef . It

can be easily seen that this is identical to Eq. 2.93. Therefore there is a direct
correspondence between the gate voltage and the chemical potential. In Fig.
3.1(d) we plot S against T for two different values of chemical potential. The
linear dependence of S on T , which has also been reported by experimental
measurements by Zuev et al. [8], suggests that the mechanism of thermoelectric
transport is diffusive [190].

3.3.1.2 Resistivity and fit to the Bloch-Grüneisen form

In Fig. 3.2 we plot ρ as a function of T calculated from the Boltzmann transport
equations for electron transport. The electron relaxation time τ of graphene
depends on the degree of doping and carrier concentration as indicated by
experimental measurements [7] and can vary in the range 10 fs to 1 ps. For
simplicity we have assumed τ ∼ 1×10−14 s; however, our temperature dependent
behaviour of ρ should not depend on the choice of τ . The behaviour of ρ at certain
values of µ having the Bloch-Grüneisen form has been observed experimentally
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Figure 3.2: Calculated resistivity ρ as a function of T for MLG at different chemical potential. Dashed black lines
are the best fit of the Bloch-Grüneisen formula. Points refer to our calculated values of ρ from the Boltzmann
transport equations, assuming τ = 1 × 10−14 s. Inset: ∆ρ plotted against T in logarithmic scale to highlight the
T 4 and T features. The red and green lines are equations of ∝ T 4 and ∝ T . The curves referring to different ∆µ
are shifted slightly along the y axis for clarity.

[10, 5]. In order to understand the behaviour, we fit our calculated values of ρ to
the Bloch-Grüneisen formula [191],

ρ(T ) = ρ(0) + A
( T

ΘBG

)m ∫ ΘBG
T

0

xm

(ex − 1)(1− e−x)
dx (3.3)

with m and T as fitting parameters. Our best fit resulted in m = 4 and ΘBG

as shown in Fig. 3.2. This suggests that in the low-T regime, resistivity scales
as T 4 and smoothly scales to a linear T behavior at higher T regimes. The
T 4 behavior of resistivity reflects the two-dimensional nature of electrons in
graphene. At high temperatures the quantization of lattice waves is irrelevant;
therefore the scattering is proportional to the square of the amplitude of the
fluctuations about their equilibrium position that is proportional to

√
T , which

leads to the linear behavior of resistivity at higher temperatures. The reduction
from the T 5 behavior of the resistivity for a typical bulk metal to the T 4 one, as
seen in graphene, is due to reduced electron Fermi surface of graphene, smaller
than the size of its phonon Brillouin zone. Therefore, only a small fraction of
acoustic phonons will scatter off the electrons. An excellent illustration and
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explanation of the high, low and Bloch-Grüneisen temperature regimes, by taking
into account different sizes of the Fermi surface of graphene and a conventional
metal at different temperatures, was given by Fuhrer [192].

As mentioned previously, ΘBG is defined as ΘBG =
2vphkF
kB

, where vph is the
phonon velocity. However when expressed as a function of carrier concentration,
it can be easily shown [193] to have the form ΘBG = A0

√
nK, with carrier

concentration measured in 1012cm−2. In our calculation, when fitted to the above
form, we obtain A0=45.5, which is close to the earlier estimated value of 54
[193].

In the inset of Fig. 3.2 we plot ∆ρ (= ρ(T )−ρ(0)) against temperature. This
parameter will now show us the increase in resistivity with respect to temperature
and when plotted in logarithmic scale, we can see that the increase in resistivity
in the lower regime has a ∼ T 4 feature and ∼ T feature at higher temperatures.
The red and green lines in the inset are ∝ T 4 and ∝ T equations where the
constant of proportionality was found by a best fit method. ΘBG is in the same
order of magnitude range as reported by [10]. We must note that this behavior
of ρ is found only for a certain range of chemical potential. If we compare our
Seebeck coefficient result to that of the experimental results by Zuev et al [8]
we find that as we vary our chemical potential from 1 eV to -1 eV, the same
behaviour is found when they vary their gate voltage from 40V to -40V. This
implies that a small change in the chemical potential is equivalent to a large
change in gate voltage. This is the reason why we choose only a small range of
chemical potentials to demonstrate the Bloch-Grüneisen behavior as observed
experimentally. If one looks at the study by Kim et al [5], the linear part of
resistivity (higher T regime) increases quickly with an increase of gate voltage
of only 1eV. As observed experimentally [10], we found that the slope of the ρ
vs T curves in the linear-T regime increases with µ. The present study of the
temperature dependent resistivity, which has been theoretically predicted [73]
and experimental observed [10], is here done using the Boltzmann transport
theory applied to band electrons.
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3.3.2 Impurity scattering in graphene

Increasing the Seebeck (S) coefficient of low-dimensional materials such as
graphene has always been a pursuit in thermoelectric applications. Enhancement
of S by inelastic scattering has been reported recently by Ghahari et al [175].
Experimental electrical conductivity studies of graphene doped with potassium
as a function of charge carrier has been reported by Chen et al [70]. From
Mott’s formula Eq. 2.93, it can be readily seen that a decrease in electrical
conductivity will enhance the Seebeck coefficient. As pointed in the previous
section doping of boron nitride decreases the electrical conductivity and hence
increases S. The unit cells used in those calculations are relatively small to
mimic the experimental behavior of doping since there is no long-range nature
of charge-impurity scattering. In order to understand the behavior of electrical
conductivity as reported by Chen et al [70] one would require a long range nature
of impurity scattering and hence a large simulation cell making first-principles
(DFT) calculations extremely hard.

As only the π states are responsible for transport in MLG and BLG [194],
a tight-binding band calculation would be more useful since it would allow
incorporation of a very large unit cell to account for the long-range nature of
the impurity scattering. In this section we report the calculation of electrical
conductivity of graphene with impurities with the help of the tight-binding
method.The tight-binding model has the potential of modeling several impurity
properties and is described by Pedersen et al. [195] (See Appendix A).

In this model, we consider an infinite graphene sheet but with one or more
atoms replaced by an impurity representing the graphitic impurities. Since we
are interested only in the transport properties, our Hamiltonian states would
consist only of the pz π states. The Hamiltonian would then be written as

H = H0 +Himp (3.4)

with H0 defined as

H0 =
∑
i

ε|i〉〈i| −
∑
i,j

tij|i〉〈j| (3.5)

where ε is the on-site energy of carbon, and tij is the hopping integral which is
described by H0 between the pz π states on site i and j. The added Himp is the
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Figure 3.3: Plot of scaled electrical conductivity (σ/τ ) of graphitic impurities with a supercell of 98 atoms and a
K mesh of 150×150×1 with different values of ∆ and different number of atoms replaced with an impurity.

impurity Hamiltonian. It depends on which site an atom has been replaced by an
impurity and takes the form

Himp = ∆
∑
i

|i〉〈i| (3.6)

where ∆ is the increase or decrease of the on site energy on site i. It must
be noted that the difference between Himp and the first term of H0 is that the
summation in Himp runs over those sites where an atom has been replaced by
an impurity whereas in the first term of H0 it runs over all available sites. From
Fig. 3.3 it can be seen that the behavior of electrical conductivity when plotted
against charge carrier is that which is observed experimentally [70] for doped
systems. Larger values of ∆ for the same number of atoms replaced by an
impurity decreases the electrical conductivity and hence from Eq. 2.93 would
increase the Seebeck coefficient. One can also see the behavior for electrical
conductivity on pristine graphene (σ ∼

√
n) tending to the linear behaviour of

electrical conductivity (σ ∼ n) for graphene sheets with impurities, a fact that
has be observed experimentally [5].
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3.3.2.1 Mobility (µFE) of doped and undoped MLG
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Figure 3.4: (a) Calculated scaled mobility (µFE/τ ) as a function of energy, and (b) as a function of carrier
concentration. The black curves are the results for pristine graphene using DFT and Boltzmann transport equations.
The red, blue, and green curves refer to results using the tight-binding model. The red curves refer to the results
for graphene with impurity, where the onsite energy of one atom in the unit cell is decreased by 1 eV, whereas the
green and blue curves refer to those where the on-site energies of 2 and 4 atoms are decreased by 1 eV, respectively.

In Fig.3.4(a,b) we show the scaled mobility (µFE/τ ) of MLG as function
of energy and carrier concentration n, calculated from the Boltzmann transport
equations, showing similar trends as to those seen in experiments by tuning
the gate voltage and carrier concentration [172, 175], respectively. We have
calculated µFE using,

µFE =
1

e

dσ

dn
(3.7)

It is easy to understand the behavior of µEF since the derivative of electrical
conductivity with respect to n should be proportional to 1√

n
. This behavior

has been reported by Ponomarenko et al. [172]. The method used to introduce
impurities is discussed in detail in the previous section. Experimental data [7, 70]
for graphene samples with increasing doping concentrations have been shown
to reduce its mobility by an order of magnitude. This effect can be seen in Fig.
3.4(b), where variation of µFE/τ is shown as a function of carrier concentration
n plotted in logarithmic scale. Our results on mobility show similar behavior to
that observed experimentally [172, 175].
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Expressing mobility in units of ñ = n
1010 cm−2 and σ̃ = σ

h/e2 kΩ−1, and
assuming the electron relaxation time τ ∼ 1× 10−14s, our calculations result in
a value of µFE ≈ 1.6× 104 σ̃

ñ [cm2/Vs] which is close to the earlier estimate of
µFE ≈ 2.42× 104 σ̃

ñ [cm2/Vs] [193].

3.3.3 Enchancement of Seebeck coefficient

3.3.3.1 Enchancement of Seebeck coefficient in MLG upon
doping with BN dimers

As mentioned previously, the performance of a thermoelectric material is mea-
sured by a dimensionless parameter, the figure of merit(ZT = S2σ

κ ). Hence
a technique to increase the Seebeck coefficient and simultaneously decrease
the thermal conductivity is highly desired. Very recent studies [196, 197] have
shown that doping of and impurities in graphene sheets will decrease the thermal
conductivity. Pop et al. [198] have mentioned that any surplus residue from
sample fabrication or any form of disorder will reduce the thermal conductivity
further. There have been many experimental [86, 87, 88, 89, 90, 91] and the-
oretical [30, 199, 200] reports to show the formation of a band gap by doping
graphene with boron nitride. Similarly there are reports to show the formation
of band gaps in bilayer graphene [201, 202, 203] when under the influence of
an electric field. We have successfully used the Boltzmann transport equation
for electron transport to calculate the thermoelectric parameter of C2x(BN)1−x

[200] and graphene/h-BN/graphene heterostructures [204]. Therefore in this
section, using the Boltzmann transport equations, we study the behavior of these
transport parameters focusing mainly on enhancing the Seebeck coefficient.

In Fig. 3.5 we show the calculated electrical conductivity (σ) and the Seebeck
coefficient (S) for MLG upon doping by BN. To study the behaviour of doped
graphene, we have substituted one and two dimers of boron and nitrogen in our
graphene unit cell as shown in Fig. 3.5. Since boron is an acceptor and nitrogen
is a donor, the total number of charge carriers remains unchanged, leading to
a gap at the Fermi energy [80, 200]. This band gap transforms the metal to a
semiconductor, thereby decreasing the electrical conductivity as shown in Fig.
3.5 (a) and (c). The inverse dependence of the electrical conductivity term in Eq.
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Figure 3.5: (a) σ/τ plotted as a function of energy. (b) Seebeck coefficient plotted as a function of energy. (c)
σ/τ plotted as a function of n. The graphene supercell containing one and two BN dimer are shown on the right.

2.93 increases the Seebeck coefficient. This is evident in Fig. 3.5(b). We can
therefore predict that doping graphene with boron and nitrogen will increase the
Seebeck coefficient.

3.3.3.2 Enhancement of Seebeck coefficient in presence of an
electric field

Since a band gap decreases the electrical conductivity thus increasing the Seebeck
coefficient, we apply an electric field perpendicularly to the monolayer graphene
sheets. BLG in an electric field has been shown to have a band gap [201]. We
have thus considered the effect of an electric field for three different values of
external potential (U ), i.e., U=0.2, 0.3, 0.5 eV. The averaged Coulomb potential
plotted as a function of its perpendicular length (z), is shown in Fig. 3.6(a).
In Fig. 3.6(b) we plot the Seebeck coefficient of BLG under the influence of
an electric field, showing that an increase in the external potential results in an
increase in S.
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Figure 3.6: (a) Average Coulomb potential plotted as a function of z for different electric fields U , (b) S plotted
as a function of energy. Differently colored curves refer to different U as in (a).

Experimentally the effect of electric field on S for BLG has been studied by
Wang et al. [60], showing enhancement of S with increasing electric field as our
calculations indicate.

3.3.4 Lattice thermal conductivity of MLG and BLG

3.3.4.1 Phonon dispersion

In Fig. 3.7 we show our calculated phonon band structure along the high-
symmetric points in the irreducible hexagonal Brillouin zone (BZ) for the mono-
layer and bilayer graphene. Accurate calculation of phonon dispersion of MLG
and BLG is necessary to understand the thermal conduction in these materials.
Based on the harmonic second-order IFCs, we calculate the phonon dispersion
of MLG and BLG along high-symmetric q points obtained within the linear re-
sponse framework by employing density functional perturbation theory (DFPT)
[138], as implemented in the Quantum Espresso code [139] described earlier.

The out-of-plane (ZA), in-plane longitudinal (LA), and in-plane transverse
(TA) modes, which arise from the Γ point of the BZ of MLG, correspond to the
acoustic mode while the remaining branches correspond to the optical modes
(ZO, LO and TO) [205]. The TA and LA modes show linear q dependence
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Figure 3.7: Calculated phonon dispersion and phonon density of states of MLG (above) and BLG (below) along
the high symmetry points of the 2D hexagonal Brillouin zone. The magenta dashed lines are the best linear and
quadratic fit to the in-plane and out-of-plane wave dependent fit to the phonon dispersion.

at low q, as is usually seen for acoustic modes. The out-of-plane ZA mode
shows a quadratic (q2) dependence, which is a distinctive feature of layered
crystals as observed experimentally [206, 207]. An explanation of this quadratic
dependence could be due to the two-dimensional out-of-plane phonon mode
and threefold rotational symmetry for BLG (sixfold for MLG) [189]. The LO
and TO modes are degenerate at Γ having a frequency of 1580 cm−1. Our
calculated value of the degenerate frequency is in good agreement with the result
using inelastic x-ray scattering measurements by Maultzsch et al. [179] having
a value of 1587 cm−1. High-voltage transport measurements by Yao et al [178]
estimated that for graphite the frequency of zone-boundary phonons should be
around 1300 cm−1. Our calculations show that at K, the BZ corner, the phonon
energy of the in-plane transverse optical (TO) mode has a frequency of 1370
cm−1 for MLG and 1287 cm−1 for BLG. This suggests that our calculations
agree well with the experiment. The phonon dispersion of BLG is very similar
to that of MLG except for a characteristic feature of an additional low-frequency
optical mode with energy nearly about 108 cm−1 at Γ. This layer breathing mode
arises due to the interlayer movements. The phonon dispersions shown in Fig.
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3.7, calculated using harmonic IFCs, are consistent with both experimental and
previous theoretical studies [176, 158, 177, 178, 179].

3.3.4.2 Grüneisen parameter (γ)
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Figure 3.8: Mode-dependent Grüneisen parameters for MLG (top) and BLG (below) along the high-symmetric q
points in the first Brillouin zone, calculated from the first-principles phonon dispersion. The experimental data for
MLG corresponding to TO phonons at the Γ point are taken from Mohiuddin et al [19].

To carry out a precise calculation of the lattice thermal conductivity, effects
from the harmonic and anharmonic lattice displacements should be taken into
account to include contributions of higher order phonon-phonon scattering pro-
cesses [208]. Since the Grüniesen parameter (γ) provides useful information
on the phonon relaxation time and the anharmonic interactions between lat-
tice waves and the degree of phonon scattering, we have therefore calculated
the mode-dependent Grüneisen parameter (γ) for MLG and BLG. We employ
the method as developed previously [177, 209, 206] to calculate the degree of
phonon scattering. It is carried out by dilating the lattice applying a biaxial
strain of ±0.5%. In Fig. 3.8 we show the calculated mode-dependent Grüneisen
parameter along the high-symmetric q points. γ is defined in Eq. 2.114, where
a0 is the relaxed lattice constant without strain, ω is the phonon frequency, ω+

and ω− are the phonon frequencies under positive and negative biaxial strain,
respectively, and da is the difference in the lattice constant when the system is
under positive and negative biaxial strain.
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MLG and BLG both have negative values for γ along the high-symmetric
q points for the out-of-plane acoustic (ZA) and optical (ZO and ZO’) modes
while γ has only positive values for the in-plane longitudinal and transverse
modes. Negative (positive) γ implies an increase (decrease) in phonon frequency
when the lattice constant is increased. The slight difference in the Grüneisen
parameters in MLG and BLG is, in the case of BLG near the long-wavelength
limit (Γ point), γZO corresponding to the out-of-plane optical mode changing
sign unlike in MLG. This suggests that near the long-wavelength limit the atom
vibrations perpendicular to the plane of the sheet between the two layers lose
their coherence hence decreasing the phonon frequencies of ωZO when under
a biaxial strain. Since the TO mode in graphene is Raman active at the Γ

point, the Grüneisen parameter can be measured experimentally using Raman
spectroscopy. Mohiuddin et al [19] have measured γE2g

to be 1.99, which is in
excellent agreement with our calculated value of γTO = 1.85 (γTO = 1.89) for
MLG (BLG). In Table 3.1 we show the phonon frequencies and the Grüneisen
parameters of MLG and BLG at high-symmetric q points Γ, K, and M for
different vibrational modes.

Table 3.1: Calculated phonon frequency ω (in cm−1) and the Grüneisen parameter γ of MLG and BLG at the
high-symmetric q points in the hexagonal BZ for different vibrational modes.

System q ZA TA LA ZO TO LO ZO’

MLG
ω
γ

0
-100

0
0.779

0
1.848

907
-0.086

1580
1.850

1580
1.605

-
-

Γ

BLG
ω
γ

0
-50

0
0.936

0
1.640

915
0.110

1540
1.892

1544
1.878

108
-0.498

MLG
ω
γ

545
-1.245

1000
0.510

1230
1.713

545
-1.245

1370
2.584

1230
1.713

-
-

K

BLG
ω
γ

554
-1.06

1046
0.581

1205
1.753

557
-1.025

1287
2.779

1206
1.749

554
-1.049

MLG
ω
γ

578
-1.057

631
0.139

1350
1.953

645
-1.004

1430
2.281

1372
1.184

-
-

M

BLG
ω
γ

478
-0.982

672
0.267

1327
2.040

660
-0.762

1348
2.432

1363
1.195

485
-0.956
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3.3.4.3 Lattice thermal conductivity using the Callaway-Klemens
method

We first obtain the analytical solution of κL for an ideal sheet of MLG and
BLG and then calculate κL numerically for them with defects and specularity
parameter (p) with values other than one.
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Figure 3.9: Temperature dependence of κL using the analytical solutions of the Callaway-Klemens method for
each of the acoustic modes at a constant length for (a) MLG and (b) BLG. Inset: Length dependence of κL
at constant temperatures, T=120K and T=300K. The maroon dotted lines are the length dependence with point
defects with parameters used to fit the experimental data [20, 21].

Fig. 3.9 shows the acoustic mode dependent κL as a function of temperature
for (a) MLG and (b) BLG at a constant length of 1.4 µm. The insets in Fig.
3.9 (a) and (b) are the length dependent κL at temperatures 120K and 300K.
Length is defined as the direction along which the heat propagates. The fitting
parameters, discussed in the previous section, used in this study are shown in
table 4.2. The length dependent analytical form for κL for MLG at RT is in
excellent agreement with a recent experiment [21]. However, our results of κL
overestimate the experimental data at T=120K. One explanation for this could
be that in the lower temperature range (0-100 K), κL increases rapidly and hence
a small change in the temperature in this range would result into a large change
in the lattice thermal conductivity, making comparison with experimental data
difficult. Another possible reason could be that we have considered a sample
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Table 3.2: Parameters used in the analytical solutions of the Callaway-Klemens method.

System
vLA

(m/s)
vTA

(m/s) γLA γTA
α × 10−7

(m2/s)
β × 10−20

(1/m2)
MLG 18021.5 12968.4 1.70 0.65 5.64 -7.7
BLG 18014.3 12624.9 1.75 0.72 5.89 -7.47

with an ideal sheet without any form of defects or impurity. We find that, using a
large specularity parameter of p = 0.9 and an extremely small value of Γ0=0.001
of Eq. 2.121, our length dependent calculations with point defects for MLG
agree with experimental measurements at T=120K.

The major difference between the thermal conductivity of MLG and BLG
is due the out-of-plane ZA phonon mode. MLG has a total of twelve process
involving the flexural phonons (ZA). Seol et. al. [210] obtained a selection rule
for the three-phonon scattering rates stating that only an even number of ZA
phonons is attributed to each process. The four allowed processes involving
flexural phonon-modes have been listed by Shen et. al. [160]. Therefore, the
scattering rate given by Eq. 2.108 needs to be multiplied by three for the case of
MLG. Our calculations suggest that the LA and TA modes contribute maximum
to the total κL.

3.3.4.4 Lattice thermal conductivity using the Iterative method

Figs. 3.10(a) and 3.10(b) show, in logarithmic scale, the length dependence of
the contribution from each of the acoustic modes (LA,TA,ZA) to the total lattice
thermal conductivity (κL) at temperature 300K and 120K, respectively for MLG
and BLG, calculated using the iterative ShengBTE method [152]. The iterative
method clearly shows that the out-of-plane acoustic ZA mode contributes the
most to the total lattice thermal conductivity. At room temperature (RT) and at
the thermodynamic limit, the contribution for MLG (BLG) are 79% (70%), 19%
(26%) and 2% (4%) from the ZA, TA and LA modes, respectively.

We find that for BLG, ther is a ∼ 9% drop in κL as compared to that for
MLG due to the ZA mode. The major difference between the phonon dispersions
between MLG and BLG is the additional out-of-plane optical mode ZO

′
. Due to

this additional low-frequency mode, more phase space states are now available
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Figure 3.10: The calculated mode-dependent (κL) and total κL plotted as a function of sample-length L in loga-
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to calculation on MLG(BLG). The orange diamond points are the values of κL [22] at the thermodynamic limit
(L→∞). (d) Zoomed box in (c) comparing our calculations with available experimental data [20, 21].

for phonon scattering and is one of the reason for the decrease in κL in BLG.
As evident from Fig. 3.10(b), we find at small sample lengths and at lower
temperatures, the mode dependent contributions to κL are identical for both
MLG and BLG indicating that the phonon transport is ballistic and independent
to the number of layers.

In Fig. 3.10(c), we plot the total κL as a function of sample length. Since
most of the lattice thermal conductivity measurements were carried out at small
sample lengths, in order to compare our calculations to experimental data, we
show in Fig. 3.10(d) the zoomed data in the thin rectangular box of Fig. 3.10(c)
where experimental measurements are available for the given sample length
range.

The orange diamond points shown in Figs. 3.10(a), 3.10(b) and 3.10(c)
are values of κL at the thermodynamic limit, reported previously [22], at the
corresponding temperatures. The thermodynamic value of κL for MLG at 120K
is higher than that its value at RT while reverse is case for BLG. This suggests
that the temperature dependence of κL(T ) has a peak closer to T =120K for
MLG, whereas this peak shifts to a higher value for BLG. Lindsay el. al. [185]
have shown that the mode dependence of κL for MLG depends only slightly on
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strain. The length dependent calculations of κL using first principles calculation
based on DFPT [185] at RT, referring to each of the acoustic modes, for the
unstrained MLG are in very good agreement with our calculations shown in Fig.
3.10(a). Our length dependent κL calculations are in excellent agreement with
earlier theoretical calculations [186] shown in Fig. 3.10(d).
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Figure 3.11: The calculated mode-dependent contributions to κL at three different sample lengths (a,b), and total
κL (c,d) as a function of temperature. Black circular dots are available experimental data [20, 21].

Fig. 3.11 shows the temperature dependence of each of the acoustic modes
and the total lattice thermal conductivity at three constant lengths, L=1.4 µm,
5 µm and 9 µm, calculated using the ShengBTE method [152], along with the
available experimental data. The ZA out-of-plane mode is shown to be the most
sensitive to length as compared to the in-plane, LA and TA modes. This suggests
that the ZA phonons travel ballistically in the sheets while the TA and LA modes
travel diffusively. Measurements of graphene [210] on a SiO2 substrate show
a reduction in κL which has been explained with a scattering model where the
contributions from the out-of-plane are the most dominant, in line with our
calculations.

Experimental results at the thermodynamic limit (L → ∞) of κL at room
temperature for graphite show a value of ∼ 2000 Wm−1K−1 [186]. Our calcu-
lated thermodynamic limit of κL for BLG is ∼ 1700 Wm−1K−1. This proximity
of κL between BLG and graphite implies that the interlayer interactions are short
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ranged.
In Figs. 3.11(a) and 3.11(b), it can be seen that at low temperatures, the ZA

mode is always larger than the in-plane acoustic modes (LA,TA). This behavior
can be understood by considering the phonon density of states (PDOS) which is
proportional the number of phonon-modes per frequency interval [185]. Using
the definition of the 2D density of states, Ds(ω) ∝ q

2π
dq
dω , one can measure

the contributions from each phonon modes to the total thermal conductivity.
Denoting Do and Di as the PDOS for the out-of-plane and in-plane modes, it can
be easily shown that, assuming a quadratic (ωi = αq2) and linear (ωi = viq) fit
to the out-of-plane and in-plane phonon modes, respectively, Do

Di
= v2

i

2αωi
. Where,

vi, ωi (i=LA,TA), are the fitting parameters to the phonon velocity and phonon
frequency shown in Table 4.2 and is plotted in Fig. 3.7. Substituting the values
from Table 4.2, it is evident that at the long wavelength limit (q → 1), Do

Di
� 1.

3.3.4.5 Lattice thermal conductivity of MLG and BLG at the
thermodynamic limit

In the ShengBTE method [152], the third-order anharmonic interatomic force
constants (IFCs) were also taken into account apart from the usual second-order
harmonic IFCs which produced the phonon dispersion, in the calculations of
thermal conductivity (κL). The third-order anharmonic IFCs were calculated
using a finite-difference supercell approach with a set of displaced supercell
configurations depending on the size of the system. We have used a 4× 4× 1

supercell for both MLG and BLG, which generated 72 and 156 configurations
for MLG and BLG, respectively. The three-phonon scattering amplitudes are
then computed from a set of third-order derivatives of energy, calculated from
these configurations using the Quantum Espresso code [139].

In Fig. 3.12 we show our calculated lattice thermal conductivity (κL) of
MLG and BLG using Eq. 2.100 as implemented in the ShengBTE code [152].
In the inset we compare our results to experimental data of Li et al [23] available
in the temperature range 300K to 700K. Our results are in very good agreement
with experimental measurements. Graphene at room temperature (RT) has one
of the highest know κL.

The experimental results of κL for MLG [211, 212, 213, 214, 215, 216] have
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Figure 3.12: Calculated lattice thermal conductivity (κL) in log scale of monolayer (red) and bilayer (black)
graphene in the temperature range 20 K to 1000 K. Inset: κL of MLG and BLG in linear scale in the temper-
ature range 300 K to 700 K, compared with experimental results [23] shown with red and black square points,
respectively.

shown that for freely suspended samples κL lies between 2000-5000 Wm−1K−1.
This wide variation in experimental estimate of κL is presumably due to any dis-
order or residue from fabrication leading to an increase in the phonon scattering.
We have, therefore, taken the most recent data by Li et al. [23] to compare with
our calculations. Our calculated κL at RT of MLG and BLG were found to be
2870 Wm−1K−1 and 1730 Wm−1K−1, respectively, which is within the range
seen experimentally, and are in good agreement with the previous literature
[158, 23, 198, 211, 212, 51]. Our calculations also show that at higher tem-
peratures, κL does not change significantly by addition of another layer which
is consistent with the report by Koh et al. [217], suggesting that κL between
graphene and its environment has a much larger influence than that of individual
graphene sheets. We find that κL increases initially from 20 K to 170 K for MLG
and to 230 K for BLG, before decreasing. For MLG, if we compare our results
to the experimental data by Chen et al [211], we find that the maximum values
of κL seen experimentally occuring at a temperature between 150 K and 200
K are in agreement to our calculations. Therefore, calculations involving both
harmonic and anharmonic IFCs, solving the BTE for phonons as done in the
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ShengBTE method, provides an accurate method for the calculation of the lattice
thermal conductivity.

3.3.5 Figure of Merit of undoped MLG and BLG
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lengths, L=1.4µm, L=5µm and L=9µm together with its thermodynamic limit (L → ∞). The black dashed line
refers to the experimental data [24]. Inset: Calculated ZT as a function of temperature for fixed chemical potential.

Fig. 3.13 shows the figure of merit (ZT ) of undoped MLG and BLG at three
different lengths together with thermodynamic limit (L → ∞). The L → ∞
results at RT, ZTmax = 0.60× 10−3, are in very good agreement with a recent
experimental measurements [24], ZT=0.55 ×10−3 (shown as black dashed line).
The electrical Boltzmann transport equations using the RTA yields an electrical
relaxation time (τe) scaled electrical conductivity ( στe ). Berger et. al. [218, 219]
have experimentally measured the resistivity to be ρ = 1 µΩcm which results
in an electrical conductivity ≈ 7.1 ×107 1

Ωm . Adopting a Drude model, Tan et.
al. [7] have estimated τe as a function of charge density having values in the
range 10fs-100ps. Using the lower bound for the relaxation time we obtain σ, as
calculated by us recently [22], in the same range as seen experimentally [218].
Therefore, we use τe = 10 fs in all our calculations for the estimate of the figure
of merit for MLG.
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In the inset of Fig. 3.13 we see that the for a fixed chemical potential, in
the temperature range 50-300K, ZT is larger for smaller sample lengths. Our
calculated ZT for both, MLG and BLG, are symmetric along the chemical
potential. Due to the linear and parabolic electronic bandstructure of MLG
and BLG, respectively; MLG has one peak while BLG has two in their ZT as
a function of chemical potential. Both, MLG and BLG are semi-metals and
hence transport would occur only near the Fermi energy because for electrons
away from the Fermi energy, there are no available states within a small energy
window. At the Fermi energy, the ZT is zero because the electronic density of
states corresponding to chemical potential at the Fermi energy is zero.

3.3.6 Decrement of κL and Enhancement of ZT in
BN-doped MLG

Defects are commonly considered to be destructive to the properties of a material
used in solid states devices. Nonetheless, defects can occasionally be useful in
supplying dopants to control their carrier concentration depending on the carriers
either being n-type or p-type. [220]. Systems such as graphene have defects
introduced in them for technological applications. Point defects arise within the
planes of graphene mostly in the form of impurity atoms and lattice vacancies.
Foreign impurities such as boron and nitrogen are common p-type and n-type
dopants for graphene.

Micro-Raman spectroscopy is a method to characterize in-plane defects in
graphene-like systems. The disorder-induced band, also known as the D-band,
is a characteristic Raman feature in graphene-like systems. The D-band has no
intensity in the absence of any defects and any given impurity that breaks the
translation symmetry of the lattice introduces a D-band intensity in the Raman
spectrum. Along with the D-band, the G-band in Raman spectrum also gives
information in understanding defects in graphene-like materials predominantly
when the impurity atoms dopes the material to change the bonding strength of
the foreign species in the host carbon atom. Therefore, the ratio of the intensity
of the D band to the G-band (IDIG )in the Raman spectrum plays an vital role in
understanding the defects due to impurity scattering in graphene-like systems.

99



Chapter 3 3.3. Results and Discussion

Study of the disorder due to defects in graphene caused by low energy Ar+

ion bombardment was done by Lucchese et al.[221] using Raman scattering.
This was carried out by varying the densities of the defects induced with different
doses in the ion bombardment. The results of the experiment were modelled by
inferring that a single impact of an ion on the graphene sheet would modify the
sheet on two length scales [222]. The model is known as the local activation
model. The two length scales are referred to as rA and rS which are the radii
of two circular areas measured from the impact point as shown in Fig. 3.14.
The shorter radius, rS, is the structural disorder from the impact point and is
know as the structurally-disordered region or the S-region. At distance for radii
greater rS but smaller than rA causes a mixing of Bloch states near the K point
and hence enhances the intensity in the D-band in the Raman spectrum. This
region is termed as the activated or A-region beyond which the lattice structure
is preserved and absent from any defect or impurity [222].

Figure 3.14: Unit cell containing 50 atoms with one BN-dimer (left) and two BN-dimers (right) embedded in
graphene used in our calculation. The red and black arrow correspond to the radius of the activated region (rA)
and the structurally defective (rS) region, respectively.

The local activation model for the ID
IG

ratio is a function of the average distance
between two defects, LD and is expressed as [222, 220, 24],

ID
IG

= CA
r2
A − r2

S
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A − 2r2
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[
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−πr2S
L2
D − e

−π(r2A−r
2
S)

L2
D

]
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[
1− e

−πr2S
L2
D

]
(3.8)

where CA and CS are adjustable dimensionless parameters. For graphene-
like materials the value of CA and CS are found to be 4.2 and 0.87 respectively
[222, 220, 24] and are the values used in our calculations. The remaining
parameters used in our paper are as follows: The average length between the
defects is the same as the length of the unit cell, LD = 12.33Å. The radii used for

100



Chapter 3 3.3. Results and Discussion

the A-region and S-region for one BN-dimer are rA = 1.85Å and rS = 0.722Å,
respectively. Similarly, the radii used for the A-region and S-region for two
BN-dimers are rA = 2.69Å and rS = 1.44Å respectively (See Fig.3.14). The
resulting ID

IG
ratio of one and two BN-dimers are calculated to be 0.253 and

0.451, respectively. The method to calculate the lattice thermal conductivity of
BN-doped graphene will be discussed shortly and the results are plotted in the
inset of Fig. 3.15 as a function of the ID

IG
ratio.

We have used our previous results [22] on electrical transport of BN-doped
MLG obatined using first-principles DFT based electronic band structure and
Boltzmann transport equations for the band electrons for obtaining σ and S,
which are then used to evaluate ZT .

For calculating κL for BN-doped MLG, we have used the iterative ShengBTE
method taking BN dimer as point defects in graphene sheets. Calculation of the
thermal conductivity of doped MLG was performed by extracting the phonon
frequency (ω) dependent phonon relaxation time from the iterative method for
MLG, adding the ω-dependent point defects (Eqs. 2.129,2.130) with calculated
parameters, and solving Eqs. 2.123 and 2.124 with the new calculated phonon
relaxation time derived from the Matthiessen’s rule (Eq. 2.122). The required
parameters for one and two BN-doping were calculated to be ΓBN

0 = 7.48 ×
10−4,Γ2BN

0 = 1.48× 10−3, which enter in Eqs. 2.129,2.130.
Polanco et al. [187] have calculated the scattering rates due to point defects

by various atoms including boron and nitrogen in graphene. The point defect
formula used in their paper is very similar to the Eqs. 2.129 and 2.130, with a
linear fit (for the LA,TA modes) and a quadratic fit (for the ZA mode) to the
phonon dispersion, as done by Lindsay et. al. [185].

In Fig. 3.15 we show the figure of Merit for MLG doped with one and two BN
dimers at three different sample lengths, L=1.4µm, L=5µm and L=9µm along
with its thermodynamic limit. The two fold increase in S, thereby increasing ZT ,
for MLG upon doping [22] is attributed to the occurance of a small band gap.
Further increase in ZT for smaller sample-lengths is attributable to decrease in
κL as shown in earlier sections.

Our calculations predict that ZT is almost symmetric around the Fermi
energy showing an increase with gate voltage for both n(p)-type doping. As one
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goes to higher values of energy (or gate voltage), there are additional peaks in
ZT separated by minima at around 0.7eV above and below the Fermi energy.
The higher values of ZT found at various energy range may lead to increased
thermoelectric performance of doped graphene based devices.

Graphene is semi-metallic and gapless which leads to extremely small ther-
moelectric power factor (S2 σ). However, a band gap is created at the Fermi level
when graphene is doped simultaneously with boron and nitrogen [223], which
leads to enhancement in its thermoelectric power factor. Elaborate work have
been carried out by various groups [200, 224, 30] on band gap engineering of
boron-nitride doped graphene by varying their constituent concentration. There-
fore, graphene doped with two BN dimers have negligible ZT around the Fermi
level for a larger chemical potential range as compared to MLG doped with one
BN dimer which in turn has negligible ZT for a larger chemical potential range
as compared to pristine MLG. This is the product of two BN dimers doped MLG
having band gaps greater than one BN dimer doped MLG and that pristine MLG
has a no band gap. In order to have a better understanding of all the peak seen
when ZT is plotted versus the chemical potential, we do a model calculation in
the next section.
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3.3.6.1 Model calculation of σ and S of BN-doped Graphene

The behavior of the ZT can be apprehended by studying the Seebeck coefficient.
For semiconductors with small energy band gaps, the Seebeck coefficient, at
a constant temperature, can be shown to be S ∝ d

dE [lnσ(E)
∣∣
EF

] [22, 149].
Where, σ is the electrical conductivity. The electrical conductivity as a function
of wave vector σ(k) was derived from the wave vector dependent velocity
(v(k) = dε

dk ), σ(k) ∝ v(k)2. ε is the energy dispersion derived from the electronic
bandstructure. The energy dependent electrical conductivity and velocity are
then calculated using, σ(ε) =

∑
i,k σ(k)

δ(ε−εi,k)
dε and v(ε) =

∑
i,k v(k)

δ(ε−εi,k)
dε ,

respectively. The dummy variable ′i′ corresponds to the band index. In our
model calculation, i runs from i = 1 to i = 4, two bands below and above the
Fermi energy. This sections aims to understand the behavior of ZT and hence
all of the constants in our calculations are set to 1.
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Figure 3.16: (a) Bandstructure of one BN-doped graphene, (b) group velocity of electrons belonging to the two
closest bands to the Fermi energy, shown in red and blue, (c) electrical conductivity of these electron system, (d)
their Seebeck coefficient. The blue and red curves in (b,c,d) refer to the bands of the same colour as in (a). The
green circles in (d) are the first-principles calculations of S taking contributions from all bands [22].

Fig. 3.16 (a) shows the the bandstructure of one BN dimer doped graphene.
The red curves are the two bands closest to the Fermi energy and the blue curves
are the next closest. The energy dependent velocity, electrical conductivity and
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Seebeck coefficient are plotted in Fig. 3.16 (b,c,d) respectively. The colour
conventions for these curves correspond to the colour of the bands in Fig.3.16
(a). It is evident from our calculations that the zeros in the Figure of Merit are
due to the vanishing electron velocities and hence electrical conductivities. Our
results using this model calculation show that the features at |E − EF | ∼ 1 eV,
which are absent in pristine graphene, are due to the bands which are second
to the closest bands to the Fermi energy. The form of the Seebeck coefficient
shown in Fig. 3.16 (d) is in decent agreement to the form calculated using the
Boltzmann equations implemented in the BOLTZTRAP code, shown in green
circles[22, 31].

3.4 Summary

In this chapter we have discussed various transport properties such as electrical
conductivity, resistivity, the Seebeck coefficient, mobility and lattice thermal con-
ductivity of MLG and BLG graphene using first-principles DFT calculations and
Boltzmann transport equations. We were able to capture many essential features
seen in MLG and BLG, for example the

√
n behavior of electrical conductivity

and its temperature dependence, the increase of the Seebeck coefficient with tem-
perature, and a linear dependence of the Seebeck coefficient on temperature for a
constant chemical potential, as observed in experiments. For a particular range of
chemical potentials we obtained the Bloch-Grüneisen behavior of resistivity in
MLG, where the resistivity increased linearly at higher temperatures whereas it
showed a ∼ T 4 behavior at lower temperatures, as observed experimentally. We
have also observed an order of magnitude decrease in mobility when the energy
on impurity sites is decreased, a fact that has been verified experimentally. The
Seebeck coefficient was found to increase almost twofold upon doping by boron
nitride. Our results for graphene with impurities show a systematic decrease in
electrical conductivity (and hence mobility) when we decrease the on-site terms
of particular atoms in the sheet. We also observe that for a high concentration of
impurities, the electrical conductivity was found to change from ∝

√
n behavior

to ∝ n behavior.
Our calculated phonon dispersion and Grüneisen parameters with harmonic
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and anharmonic IFCs, for both MLG and BLG show good agreement with
available experimental data and previously published calculations. We finally
show the result of the lattice thermal conductivity, calculated using phonon
Boltzmann transport theory and first-principles phonon bandstructure including
both harmonic and anharmonic interactions, showing excellent agreement with
recent experimental data [23] available in the temperature range 300-700 K.
Further experimental measurements are needed to verify the occurrence of a
peak in κL near T ∼150-200 K for both MLG and BLG.

Making a linear and quadratic fit to the in-plane and out-of-plane acoustic
phonon dispersion along with constant in-plane and an out-of-plane inverse
square wave vector dependent Grüneisen parameters, we find an analytical solu-
tion to the mode, length and temperature dependent lattice thermal conductivity
for the Callaway-Klemens method. The Callaway-Klemens method suggests
that the out-of-plane ZA modes contribute the least to the total lattice thermal
conductivity due to the large negative Grüneisen parameters and vanishing ve-
locities at the long wavelength limit and that the major contribution to κL are
due to the in-plane modes, LA and TA, due to their large velocities and small
Grüneisen parameters. The lattice thermal conductivity was also calculated
beyond the RTA using an iterative method implemented in the ShengBTE code.
The iterative method suggests that, in direct contrast to the Callaway-Klemens
method, that the ZA modes contribute the most to the total κL while the in-plane
modes contribute the least.

The Callaway-Klemens and iterative method both yield excellent agreement
to total κL for MLG at room temperature. However they yield different mode
contributions. This raises the question as to which mode contributes the most
to κL. In order to solve this discrepancy, we calculate the mode, length, and
temperature dependent κL of BLG since the selective rule is broken in the ZA
modes for BLG. We find that the Callaway-Klemens method overestimates the
thermal conductivity and additional point defects parameters are required to make
the theory fit with the experiments. However, using the iterative method, we
observe that all our calculations are in excellent agreement with many available
experiments without the use of any fitting parameters. We therefore conclude
that the thermal conductivity has its major contribution from the ZA mode and
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is also the most sensitive to the sample length. We also conclude that the mode
dependent relaxation time calculated from the Callaway-Klemens method are
not accurate and one must go beyond the RTA to solve the relaxation times
especially for 2D materials like MLG and BLG.

Along with the electrical transport parameters like electrical conductivity,
Seebeck coefficient and hence power factor calculated by us earlier, we have
calculated the figure of merit of MLG and BLG. The lattice thermal conductivity
used in our calculations were only taken from the iterative method. Our calcula-
tion for pristine graphene at the thermodynamic limit are in excellent agreement
with available experimental data. We also find an enhancement of the figure of
merit when the sample lengths are in order of µm as compared to that of the
thermodynamic limit. Moreover, we show that when pristine graphene is doped
with one or two boron nitride dimers, the figure of merit is found to be enhanced
over a wide range in chemical potential. We have therefore found a new route
to enhance the figure of merit of graphene and hence improve graphene based
devices over a wide range in gate voltage.
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Chapter 4

First-principles calculations of lattice
thermal conductivity of multi-layered
hexagonal boron nitride and comparison
to experiments1

4.1 Introduction

We investigate numerically the sample length and temperature dependence of the
thermal conductivity (κL) of single and multilayer h-BN by solving the phonon
BTE beyond the relaxation time approximation (RTA) using the force constant
derived from a real space super cell method, and also by solving the phonon
BTE in the RTA using the Callaway-Klemens approach. A long standing puzzle
has been to answer which acoustic phonon mode dominates the total lattice
thermal conductivity for such 2D materials [225]. There have been arguments
on whether the out-of-plane ZA vibrational mode contributions to κL are the
most dominant or the least in comparison to the other acoustic modes. Owing to
the selection rules restricting the phase space for phonon-phonon scattering in
ideal graphene [226, 227, 210] and boron nitride [151], the ZA mode seem to
be the most dominant. In a rather sharp contrast, references [158, 150] suggest

1Based on a publication by R D’Souza, S Mukherjee, Physical Review B 96, 205422 (2017)
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that since in the long wavelength limit (q → 0), the phonon dispersion of the ZA
modes seem to be flat thus making the phonon velocities small, and also the fact
that the Grüneisen parameters are large, would make the ZA contributions to
κL the least in comparison to other acoustic modes. Here, using the Callaway-
Klemens approach, we examine this discrepancy from analytical solutions to
the phonon BTE for each of the acoustic modes using a closed form for the
scattering rate for the three-phonon processes derived by Roufosse et. al. [228]
and an exact numerical solution for the phonon BTE beyond the relaxation time
approximation (RTA) in which the phonon lifetimes are formed in terms of a set
of coupled equations and solved iteratively. We also examined the sample length
(L) dependence of κL and found this to be very sensitive to L, which may justify
the application of multilayered h-BN in thermoelectric devices by manipulating
κL.

4.2 Computational details

Density functional theory
First-principles DFT and DFPT calculations, as described in section 2.1 and 2.2,
were carried out on a hexagonal supercell for the monolayer, bilayer and bulk
boron nitride, whereas an orthorhombic supercell was used for five layers h-BN
sample, using the plane wave pseudopotential method as implemented in the
QUANTUM ESPRESSO code [139]. We have used 2 atoms in the unit cell for
SLBN, 20 atoms for five layered BN and 4 atoms in both bilayer and bulk boron
nitride. To prevent interactions between the layers, a vacuum spacing of 20 Åwas
introduced along the perpendicular direction to the layers (z-axis) mimicking
an infinite BN sheet in the xy plane. For MLBN and bulk-hBN, the Van der
Waals interaction as prescribed by Grimme [229], was used between the layers.
For the electronic structure calculations, Monkhorst-Pack grids of 16× 16× 1

and 16 × 16 × 4 were chosen for SLBN and MLBN, resepectively, for the k-
point sampling. Self-consistent calculations with a 40 Ry kinetic energy cut-off
and a 160 Ry charge density energy cutoff were used to solve the Kohn-Sham
equations with an accuracy of 10−9 Ry for the total energy. We used ultrasoft
pseudopotential to describe the atomic cores with exchange-correlation potential
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kernel in the local density approximation [230]. The electronic structure and
total enrgy calculations were used to obtain the groundstate geometry before
persuing the phonon calculations.
Density functional perturbation theory
For the phonon bandstructure calculations, the q-grid used in the calculations
were 6× 6× 1 for SLBN, 6× 6× 2 for BLBN and bulk h-BN and 4× 4× 2

for 5-layer BN, respectively. The density functional perturbation theory (DFPT)
[138], as implemented in the plane wave method [139], was used to calculate the
phonon dispersion and phonon density of states (DOS) along the high-symmetric
q-points.
Calculation of the lattice thermal conductivity
The calculation of lattice thermal conductivity κL involves evaluation of second-
order harmonic interatomic force constants (IFCs) as well as the third-order
anharmonic IFCs. We have used first a real space supercell method which eval-
uates the third-order IFCs in a real space grid using DFT [152], whereas the
second-order IFCs are obtained from the DFPT method [139, 138]. Secondly, us-
ing the Callaway-Klemens method [156, 157], the relaxation times were obtained
from the Grüeisen parameters. Finally, the length, thickness and temperature
dependence of κL were studied.
Real space super cell approach
In the real space super cell iterative approach, the third order anharmonic IFCs are
calculated from a set of displaced supercell configurations depending on the size
of the system, their symmetry group and the number of nearest neighbour inter-
actions. A 4×4×2 supercell including upto third nearest neighbour interactions
were used to calculate the anharmonic IFCs for all the structures, generating 128
configurations for single and bulk BN, 156 for bilayer BN (BLBN) and 828 for
five-layered BN (5LBN). The third order anharmonic IFCs are constructed from
a set of third-order derivatives of energy, calculated from these configurations
using the plane wave method [139]. The phonon lifetimes are calculated from
the phonon BTE which are limited by phonon-phonon, isotropic impurity and
boundary scattering [151]. The three-phonon scattering rates are incorporated in
this method, as implemented in the the ShengBTE code [152]. Elaborate details
on the work-flow of the three-phonon scattering rates can be found in reference
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[152] while Lindsay [151] specifically discuses this for bulk h-BN.

4.3 Results and discussion

4.3.1 Phonon dispersion and density of states

Accurate calculations of the harmonic second order IFCs are necessary for a
precise description and understanding of the thermal conductivity. Deviations
due to numerical artifacts from the expected behavior of acoustic modes can
lead to incorrect results especially for 2D marterials [231]. The full structural
relaxation of SLBN, BLBN, 5LBN and Bulk-hBN yield a lattice constant (a0)
of 2.49 Å. The interlayer spacing (c) for MLBN is found to be 3.33 Å. The
experimentally measured a0 is 2.50 Å [232] and the ratio of interlayer spacing
and the lattice constant (a0

c ) is 1.332 [232] which is in excellent agreement with
our calculated value of 1.337.

The calculated phonon dispersion and phonon density of states are shown in
Fig. 4.1 for (a) SLBN, (b) BLBN, (c) 5LBN and (d) Bulk-hBN along the high
symmetric q-points in the irreducible hexagonal and orthogonal Brillouin zone
(BZ) together with some available experimental data for Bulk-hBN [25]. As
usually seen for acoustic modes, the in-plane longitudinal (LA) and transverse
(TA) modes show a linear q dependence at the long-wavelength limit while the
out-of-plane (ZA) mode shows a quadratic (q2) dependence. This quadratic
dependence, which is a typical feature of layered crystals, is due the rotational
symmetries of the out-of-plane phonon modes.

For SLBN, there are six modes for each wave vector, three acoustic (LA,TA,ZA)
and three optical (LO,TO,ZO). At the Γ point the optical LO and TO modes
are degenerate. For BLBN, if the two SLBN layers are far apart, effects due
to their interlayer coupling can be neglected and the phonon dispersion will be
exactly as what is seen in SLBN. However, when these two SLBN come closer,
due to the interlayer coupling, the two-fold degeneracy is removed giving rise to
in-plane and out-of-plane phase modes. The LA and TA modes are not perturbed
much implying that the main effect of the interlayer interactions is due to the
ZA modes. This is because the transverse motion of atoms in both the layers

110



Chapter 4 4.3. Results and discussion

associated with these modes interact strongly with each other. The same reasons
hold on why 5LBN has one zero and four raised frequencies at the Γ point. In
Bulk-hBN, there are four atoms per unit cell and the two atoms in each layer
are now inequivalent therefore doubling each of the acoustic and optical modes.
The acoustic modes at the zone boundaries fold back to the zone centre as two
rigid layer modes [233], viz, an optically Raman inactive and an Raman active
mode. The Raman active LA2 and TA2 modes are doubly degenerate at the Γ

point having a finite value mentioned in Table 4.1. The layered breathing modes
for MLBN are denoted by ZO

′
for BLBN and Bulk-hBN and ZO

′

i (i = 1, 2, 3, 4)
for 5LBN.
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Figure 4.1: The calculated phonon dispersion (left) and phonon density of states (right) of (a) SLBN, (b) BLBN,
(c) 5LBN and (d) Bulk-hBN along with experimental data (orange circles) [25]. The phonon dispersion were
calculated along the high-symmetry points of the 2D Brillouin zone (qz = 0) corresponding to the hexagonal cell
for SLBN, BLBN, and Bulk-hBN and orthorhombic cell for 5LBN. We also plot in (d) the two-phonon DOS shown
for Bulk-hBN in red dashed line. The cyan, magenta and green curves in (a,b,c,d) are the best linear and quadratic
fit to the phonon dispersion referring to LA, TA and ZA modes, respectively.

The symmetries of SLBN, BLBN, 5LBN and Bulk-hBN structures at Γ can
be described using the character table shown in table 4.1. Using a standard group
theoretical technique (see Appendix C.1), it can be shown that for Bulk-hBN and
BLBN that the 12 phonon modes are decomposed into the following irreducible
representations: 2(A2u + B1g + E2g + E1u) and 2(A2u + Eg + A1g + Eu). Similarly
for SLBN, the irreducible representation is A2u + B1g + E2g + E1u for the six
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Mode
Expt. (& Prev. calculateda )

ω (cm−1)
Bulk-hBN

(Sym.)
BLBN
(Sym.)

SLBN
(Sym.)

LA2 & TA2 51.62b (52.43) 58.55 (E2g) 25.73 (Eg) -
ZO′ Silent (120.98) 85.01 (B1g) 66.54 (A1g) -
ZO 783.16c (746.87) 784.05 (A2u) 803.01 (A2u) 819.37 (A2u)
ZO2 Silent (809.78) 823.17 (B1g) 818.25 (A1g) -
LO 1366.30b, 1370.33c, 1363.88d (1379.20) 1363.80 (E2g) 1364.45 (Eg) 1363.88 (E2g)
TO 1367.10c (1378.4) 1366.95 (E1u) 1365.66 (Eu) 1363.88 (E1u)

LA & TA (cm−1)
(Point Group Symmetry)

LO (cm−1)
(P.G. Symmetry)

TO (cm−1)
(P.G. Symmetry)

ZO (cm−1)
(P.G. Symmetry)

14.60 (E
′′
) 1409.46 (E

′
) 1405.23 (E

′
) 817.59 (A

′
)

31.10 (E
′
) 1408.91 (E

′′
) 1404.94 (E

′′
) 814.58 (A

′′
)

5LBN 38.95 (E
′′
) 1408.71 (E

′
) 1404.81 (E

′
) 812.58 (A

′
)

47.43 (E
′
) 1408.36 (E

′′
) 1404.49 (E

′′
) 810.27 (A

′′
)

1405.57 (E
′′
) 1404.40 (E

′
) 803.27 (A

′
)

Table 4.1: Experimentally measured Raman and Infrared phonon frequencies for bulk-hBN and those obtained
from present calculations for all the systems studied are shown at the Γ point in the BZ. Previously calculated
values for bulk-hBN are also shown together with the experimental data for comparison.

a From ab initio dispersion calculations, Ref. [25].
b Experimental Raman data, Ref. [234].
c Experimental Raman and Infrared data, Ref. [235].
d Experimental Raman data, Ref. [236].

phonon modes and 5LBN has an irreducible presentation given by 4(A
′

1 + E
′′
)

+ 6(A
′′

2 + E
′
). Transitions corresponding to the basis x, y, z (xy, yz, z2, etc.)

are Infrared (Raman) active. Those that are neither Infrared or Raman are the
silent modes. Due to the momentum conservation requirement (q = 0), the
first-order Raman scattering process is limited to the phonons at the center of the
Brillouin zone. We therefore compare our calculated frequencies at the Γ point
corresponding to A2u, E1u, A

′′

2, E
′
, and Eu to the infrared experimental data and

E2g, E
′′
, A1g, Eg, and A

′′

1 to the Raman experimental data as shown in table 4.1.
Raman spectroscopy is the most adaptable tool that offers a direct probe

for multi-layered samples [233]. Table 4.1 shows the transitions corresponding
to the Infrared (E

′
and A

′′
) and Raman (E

′′
and A

′
) active modes in the case

of 5LBN. Further experiments for layered boron nitride would be required to
verify the correctness of calculations. However, LDA with VdW interaction
have shown to accurately describe the phonon dispersions for layered graphene
when the geometry (i.e. interlayer distance) is represented correctly even though
the local or semi-local exchange correlation functionals may not represent the
interactions correctly [233].

Another experimental technique to analyse the modes of a system is the
second-order Raman spectroscopy in which the peaks are seen over the entire
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frequency range. Most of these peaks are in agreement with the phonon density
of states when the frequency is scaled by a factor of 2 [25, 232]. We have
hence plotted, to the right of our phonon dispersion, the frequency scaled DOS.
However, as pointed out by Serrano et al., peaks which are absent in the DOS
can be seen in the second-order spectroscopy because the DOS does not take
both overtones, i.e. summation of modes having the same frequencies, into
account. The two phonon density of states (DOS2ph) are also essential for the
understanding of phonon anharmonic decay [237]. Experiments on the second-
order Raman spectrum of h-BN has been performed by Reich et al [236]. We
show in Fig. 4.1(d) the two-phonon DOS [238],

DOS2ph(ω) =
∑
i,j

δ(ω − ωi − ωj) + δ(ω − ωi + ωj), (4.1)

for Bulk-hBN using our calculated harmonic interactions. The peaks seen
experimentally [236] at 1639.4 cm−1, 1809.907 cm−1 and 2289.8068 cm−1 are
absent in the DOS. However, these large spectral features are now observed at
1680.4 cm−1, 1821.2 cm−1 and 2306.7 cm−1, due to two phonon DOS (DOS2ph).

4.3.2 Grüneisen parameter

Besides providing important information on the phonon relaxation time, the
Grüneisen parameter (γ) also provides information on the degree of phonon
scattering and anharmonic interactions between lattice waves. Therefore, an
accurate calculation of the lattice thermal conductivity (κL) would require a
precise calculation of γ since anharmonic lattice displacements play a vital role
in calculations of κL. Fig. 4.2 displays the mode dependent γ for SLBN, BLBN,
5LBN and Bulk-hBN along the high symmetric q points. The anharmonic lattice
displacements are carried out by dilating the unit cell by applying a biaxial strain
of ± 0.5 % and is expressed as shown in Eq. 2.114. We find that the acoustic
modes correspond to the lowest Grüneisen parameters which is in-line with
experimentally measured γ [239]. As in the case of graphene, the out-of-plane
acoustic transverse mode has the largest negative γ parameters.

Positive (negative) Grüneisen parameters suggest a decrease (increase) in
phonon frequencies as the lattice constant increases. Near the long-wavelength
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Figure 4.2: Grüenisen parameters of each mode for (a) SLBN, (b) BLBN, (c) 5LBN and (d) Bulk-hBN. The colour
representation of each mode and fit are shown on the right. The magenta curves are the best fit to the ZA mode
along the direction in the BZ chosen to calculate the lattice thermal conductivity.

limit, γZO′ for 5LBN is positive but becomes negative as we move along the Γ to
Y direction in the BZ. γZO′ , associating with the layer breathing mode suggests
that due to the additional layers the atom vibrations along the perpendicular
direction between them lose their coherence and hence decreases the phonon
frequencies when the system is under a biaxial strain.

As described in table C.1, E2g, E
′′
, A1g, Eg, and A

′′

1 are Raman active and
hence in principle their Grüneisen parameter can be calculated experimentally
using Raman spectroscopy. There exist experimental data for bulk h-BN but to
the best of our knowledge there does not exist experimental data for single or
MLBN. We therefore compare our results to that of bulk-h BN.

The lowest Grüneisen parameters along the Γ-K-M directions for the TO
and LO modes were found to be 1.72 and 1.59, respectively. Our calculations
for these modes are only ∼ 1.1% and ∼ 1.3% larger than the experiment val-
ues of Sanjurjo et al. [239] who have obtained the Grüneisen parameters by
measuring the pressure dependence of Raman lines. The slight deviance from
the experimental measured value could be because the measured values are for
Zinc-blende-BN and not hexagonal BN.
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4.3.3 Analytical and Numerical solutions to the
Callaway-Klemens’s Approach

In order to compare the results obtained from the real space super cell approach
(ShengBTE), we now study the mode, temperature and length dependence
of single and MLBN calculated using the Callaway-Klemens’s approach as
described earlier. We first obtain analytical solutions for each acoustic mode of
the Phonon BTE by making some reasonable approximations to understand the
basic behavior of temperature and length dependence of κL. In order to compare
with the experimental results, we resort to exact numerical computation.

We have carried out all the length dependent calculations at a constant
temperature for MLBN at RT. The corresponding length dependent curves for
MLBN are plotted in Fig. 4.3 (e). The parameters used in our study are shown in
Table 4.2. Equations 2.110 and 2.111 are plotted in Fig. 4.1 and Equation 2.117

Table 4.2: Relevant parameters used in the calculations for the analytical solutions of the lattice thermal conduc-
tivity.

System
vLA

(m/s)
vTA

(m/s) γLA γTA
α × 10−7

(m2/s)
β × 10−20

(1/m2)
SLBN 17020.1 11599.8 1.546 0.452 3.99 -6.827
BLBN 16379.4 11474.9 1.585 0.5673 3.75 -6.086
5LBN 21095 11420.6 1.48 0.424 4.2 -6.348

Bulk-hBN 16379.4 11474.9 1.57 0.59 3.72 -7.18

is plotted in Fig. 4.2 to compare the analytical fit to the actual phonon dispersion
and Grüenisen parameters.

The individual contributions of each of the acoustic modes LA, TA, ZA and
the sum of these, i.e. κL, for single and multilayered h-BN are shown in Fig. 4.3
(a,b,c,d). The variation of κL values for BLBN and Bulk-hBN are quite similar
but are lower for 5LBN. This is in good agreement with experiments [26, 27, 28].
In all cases it is observed that amongst the acoustic modes the TA contribution
is the largest, ZA to be the least whereas LA contribution is somewhere in
between. It has been quite controversial as to which acoustic mode contributes
the most to the total lattice thermal conductivity. For example, while some reports
[240, 151, 188, 210, 226] show that the contributions from ZA to be the most
dominant, there are many other reports [160, 241, 177, 242, 158, 225, 243, 244]
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Figure 4.3: Acoustic modes and temperature dependence of lattice thermal conductivity for (a) SLBN (b) BLBN
(c) 5LBN and (d) Bulk-hBN at a constant length. The theoretical calculations are carried out by using Eq. 2.115
for the LA and TA modes while Eq. 2.118 was used for the ZA mode. The parameters used in our calculations
are shown in Table 4.2. The colour representation for each mode are shown on the right. The black dots are the
experimental measurements [26, 27, 28]. Length dependence is worked out by varying L in Eq. 2.116

that show exactly the opposite. Our analytical results concur with the latter, i.e.
the contribution from the ZA mode is the least.

The thermal conductivity for two-dimensional layered materials given by Eq.
3.12 is derived assuming both phonon energy dispersions and phonon scattering
rates are weakly dependent on the direction of the Brillouin zone [158]. The
calculation of κL should be independent of the direction chosen resulting in an
isotropic in-plane scalar κL. Calculation of κL should therefore be independent
of direction chosen. We move along the Γ to K direction for systems in which
a hexagonal unit cell is used and along Γ to Y in the case of an orthorhombic
unit cell. SLBN has the highest calculated κL, 5LBN has the least while κL lies
in between BLBN and Bulk-hBN. From Fig. 4.4 it can be easily seen that for
temperatures below 100K, the contribution to the total κL is mainly due to the
flexural ZA modes.

As in the case of graphene, SLBN can have a total of 12 processes involving
the flexural phonons. However, Seol el al [210] obtained a selection rule for
the three-phonon scattering. This rule states that only an even number of ZA
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phonons is allowed to be involved in each process. Shen et al [160] have listed
four flexural allowed processes. Hence, the scattering rate of the Umklapp
phonon-phonon process for the acoustic flexural branch is multiplied by a factor
of 4

12 and the relaxation time for the ZA mode becomes 3 times of that of
Eq. 2.108. Therefore besides having a larger velocity and a smaller averaged
Grüneisen parameters compared to the other systems, the major contribution for
an increased κL is due to the symmetry of the ZA mode.

Phonon dispersions and Grüneisen parameters for BLBN and Bulk-hBN are
very similar which explains why their calculated κL have the same magnitude.
In the case of 5LBN, there are additional five low frequency modes (also termed
as layer-breading modes), which arise due to the interlayer moment. Due to
this change in phonon dispersion, more phase-space states become available
for phonon scattering and therefore decreases κL [52]. Numerical calculations
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Figure 4.4: Acoustic modes and temperature dependence of lattice thermal conductivity for (a) SLBN (b) BLBN
(c) 5LBN and (d) Bulk-hBN at a constant length. The theoretical calculations are carried out by solving Eq. 3.12
numerically for each of the modes. The colour representation for each mode are shown on the right. The black
dots are the experimental measurements [26, 27, 28]. Length dependence is worked out by varying L in Eq. 2.116.

are carried out using the exact form of the phonon dispersion and Grüneisen
parameters as displayed in Fig. 4.1 and Fig. 4.2 rather than the analytical form
of the acoustic modes and averaged Grüneisen parameters. We numerically
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solve Eq. 3.12 for each of the modes at a constant sample length varying
temperature as well as at a constant temperature varying lengths between 0.1
to 10 µm. These results are compared with experimental data [26, 27, 28] and
shown in Fig. 4.4. Numerically calculated values of κL are in better agreement
with the experimental data as compared to the analytical form. We find the
contribution from the ZA modes to dominate at lower temperatures but rapidly
decreases as the temperature increases making the flexural modes contribute the
least at relatively higher temperatures. This is in line with previous theoretical
calculations [242].

4.3.4 Thermal conductivity calculated using real
space supercell approach
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Figure 4.5: Calculated thermal conductivity of single and multilayer BN shown as a function of (a) temperature
and (b) length, using the real space approach. In (a) the curves refer to the thermodynamic limit (L → ∞). In (b)
the sample length is in logarithmic scale. The square and triangle data points refer to experimental measurements
for BLBN [28] and 5LBN [27], respectively.

In Fig. 3.9 (a) and (b) we show the variation of thermal conductivity as a
function of temperature (T ) and sample length, respectively. The sample length
is measured along the direction of the heat flow. The theoretical computation
was carried out using the interatomic force constants obtained from the real
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space approach and an iterative method in calculating the relaxation times as
implemented in the ShengBTE code [152]. To have a broad understanding of the
thermal conductivity, we study different types of possible unit cells, i.e., MLBN
considered here have even, odd and infinite number of layers since each unit
cell has a different character table. Calculations were done using orthogonal
cell for 5LBN and hexagonal cells for SLBN, BLBN and bulk-hBN. The study
was carried out over a wide range of sample lengths between 0.01 µm and 1000
µm with 0.1µm grid. The temperature of each sample was varied between 10 K
to 1000 K with a grid of 10 K. On plotting the thermodynamic limit (L→∞)
for each of the system we find that κL is practically independent of length for
lengths greater than 100 µm.

Our recent results of κL in the thermodynamic limit (L→∞) for monolayer
and bilayer graphene [22] are in excellent agreement with the recent experimental
work of Li et. al [23], whereas the thermodynamic limit for MLBN is much
larger than some recent experimental measurements [27, 28]. Sample lengths
used by Li et. al. were of the order of millimetres for the measurement of
single and bilayer graphene while Jo et. al. and Wang et. al. have used sample
lengths of 5 µm and 2 µm for 5LBN and BLBN, respectively. As mentioned
earlier, κL does not vary much for lengths larger than 100 µm but is extremely
sensitive when the lengths are between 1 and 100 µm. Not surprising therefore,
our thermodynamic limit of κL are in good agreement for graphene but not for
MLBN.

In order to compare our calculations to that of experiments, we calculate the
cumulative lattice thermal conductivity at lengths corresponding to the sample
lengths used in the experiments. The cumulative κL was calculated in the temper-
ature range 10-1000 K. Fig. 3.9 (b) shows the cumulative thermal conductivity
at room temperature (RT).

The curves in Fig. 4.6, are the calculated values of κL at constant lengths
which are compared with the experimental observations [28, 26, 27]. For the
lengths used in the experiments the magnitudes of κL for bulk-hBN and bi-layer
lie in between SLBN and 5LBN with SLBN (5LBN) being the highest(lowest).
The maxima of κL of∼ 500 Wm−1K−1 for Bulk-hBN is found in the temperature
range 250-300 K and tends to saturate to a value ∼ 450 Wm−1K−1. Experimen-
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Figure 4.6: Calculated thermal conductivity of single and multilayer BN shown as a function of temperature at
a constant length, using the real space approach. The square, circle, triangle data points refer to experimental
measurements for BLBN [28], Bulk h-BN [26] and 5LBN [27], respectively.

tally [26] the maxima is found between 150-200 K and tends to saturate to a
value ∼ 400 Wm−1K−1. Lindsay et. al. [151] varies the sample length and finds
an excellent fit with the experimental data for L = 1.4µm. It must be noted
that the sample length is not mentioned in the experimental reference [26] for
Bulk-hBN. As the length of the sample increases, the maxima of κL(T ) shifts
towards the left, i.e. the maxima is found at a lower temperature. Therefore for
BLBN and 5LBN, where the lengths used in the experiments are larger than 1.4
µm, the maxima would be at lower temperatures, in total disagreement with the
experiments [28, 27]. Our calculations for BLBN and 5LBN are in excellent
agreement with experiments for the same lengths. Even though our calculated
values diverge from the experimental measurements by Sichel et. al. [26] at
higher temperatures, we believe that the behavior of κL as calculated by us for
bulk-hBN is correct. However, further experiments should throw more light on
these discrepancies. It is our conjecture that κL of Bulk-hBN should be similar
to that of BLBN since the phonon dispersions in the two cases are very similar.

In Fig. 4.7 we show the acoustic mode dependent contributions to the total
thermal conductivity for SLBN and MLBN by solving the phonon BTE beyond
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Figure 4.7: Contribution to the thermal conductivity of single and multilayer BN from the acoustic modes; (a) ZA,
(b) TA and (c) LA, shown as a function of temperature in thethermodynamic limit (L → ∞), and as a function
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the RTA. The out of plane mode is clearly seen to contribute the most to the
lattice thermal conductivity for all the mentioned structures. For SLBN the
contributions from the ZA, TA and LA modes to κL at room temperature are
∼ 86.1 %, 7.4 % and 6.5 %. A similar trend is observed in graphene [226].
Qualitatively one can understand why the ZA mode contributes the most to
κL by calculating the number of modes per frequency for each of the acoustic
mode. Now the number of modes per frequency is proportional to the 2D
density of phonon modes, Ds(ω) ∝ q

2π
dq
dω , and hence the ratio of DZA(ω) and

DTA(LA)(ω) would give a measure of the contribution of the respective phonon
modes. Assuming a quadratic fit to the ZA dispersion, ωZA = αq2

ZA, and a linear
fit to the in-plane TA and LA phonon dispersion, ωTA(LA) = vTA(LA)qTA(LA),

the ratio of the density of phonon modes is DZA

DTA(LA)
=

v2
LA(TA)

2αωLA(TA)
. Here α and

vLA(TA) are fitting parameters to the phonon dispersions shown in Fig. 4.1 and
their values are shown in table 4.2. Substituting these values, it is evident that
DZA

DTA(LA)
� 1 at the long wavelength limit suggesting that the major contributions

to the lattice thermal conductivity are due to the out of plane modes. Representing
the ZA contribution of the thermal conductivity of MLBN at room temperature
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with respect to SLBN, we observe that κSLBNZA = 1.28κBLBNZA = 2.17κ5LBN
ZA ,

suggesting that the significant decrease of κL from SLBN to MLBN is because
of the additional raised frequencies of the ZA layered breathing modes.

Kong et. al. [177] reported that the lattice thermal conductivity of single
layer graphene and bilayer are similar, κgrapheneL ≈ κbilayerL , while Lindsay et. al
[188] reported κgrapheneL ≈ 1.37κbilayerL . The difference in their methodologies
is that the latter has taken graphene symmetry into account, which is discussed
in detail by Seol et.al. [210] and Lindsay et.al. [188]. Besides the contribution
due to the layer breathing out of plane modes, a decrease in κL is also due to the
violation of the selection rule [210, 188] which is incorporated in the formalism
in the super-cell real space approach. In Fig. 4.7 (d,e,f), we show the mode
dependent κL at room temperature as a function of sample length. At any given
length, the maximum difference in κL contributed from LA and TA modes for all
the mentioned structure is ∼ 47 and 65 Wm−1K−1 respectively while that from
the ZA mode is∼ 750 Wm−1K−1, an order of magnitude larger, implying that the
contribution from the in-plane thermal conductivity is almost independent of the
number of layers. This characteristic has been seen using a Tersoff potential in the
case of single and multilayered graphene and boron nitride [188, 245]. This rapid
decrease in κL by increasing the number of layers, which is mainly due to the
ZA mode, suggests that the interlayer interactions are short ranged, i.e., the BN
layers only interact with neighbouring BN layers [188]. In all of the structures,
the contribution to κL from the ZA mode have a stronger L dependence as
compared to the TA and LA modes, i.e., the contributions from the in-plane
modes saturate to their thermodynamic limit at a lower L value as compared to
the contributions from the out-of-plane modes. This is due to the larger intrinsic
scattering times allowing the ZA phonons to travel ballistically and the relatively
smaller scattering time which reflects the diffusive transport of the TA and LA
phonons [188]. Calculations based on the mode dependent contributions to κL
as a function of mean free path and recent advanced experimental techniques
[153, 154, 155] should motivate further studies in these directions.

The in-plane phonon contributions having a small L dependence in compari-
son to the contributions from the out of plane has been calculated for graphene
recently using the Tersoff potential [185] and their calculated cumulative mode
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dependent thermal conductivity behavior is in good agreement with our calcula-
tions for SLBN.

4.4 Summary

Phonon dispersions using a LDA pseudopotential with vdW interactions, density
of states (DOS), the Grüneisen parameters and the lattice thermal conductivity
have been calculated by the Callaway-Klemens and Real space super cell ap-
proach for SLBN, BLBN, 5LBN and Bulk-hBN. Additionally, in the case of
Bulkh-BN, we calculate the two-phonon DOS. Irreducible representation using
the character table at the Γ point in the BZ for each of the systems have been
derived in order to compare the symmetry modes with those obtained from Ra-
man and infrared spectroscopy experiments. Results from the investigations by
EELS data, Raman, second-order Raman and Infrared spectroscopy are found to
be in excellent agreement with the theoretical calculations based on the phonon
dispersion, DOS and two-phonon DOS which rely on the harmonic second order
inter atomic force constants.

Further, we have calculated the sample length and temperature dependence
of lattice thermal conductivity by the real space super cell approach with the help
of the second order IFCs calculated by DFPT. Lattice thermal conductivity at the
thermodynamic limit for each system has a maximum between the 110-150 K.
For sample sizes in the range 1-5 µm, κL does not have a maximum. However
with increase in temperature it tends to saturate at a value which is an order
smaller than the thermodynamic limit.

Our mode dependent calculations using the real space method suggests that
the majority of the contributions to the thermal conductivity are due to the ZA
phonons for all of the structures. The substantial decrease in κL from single to
MLBN is because of the additional layer breathing modes but mainly due to
the fact that the interlayer interactions breaks the SLBN selection rule resulting
in suppressing the ZA phonons contributions to κL in MLBN. Contribution to
κL from the in-plane modes are not sensitive to the number of layers and have
a lower L dependence compared to the out of plane modes. This reduction in
κL from SLBN to MLBN which is mainly due to the ZA phonons indicate that
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the interlayer interactions are short ranged. The L dependence of the TA and
LA contributions to κL saturate to their thermodynamic limit faster than that
of the contribution from the ZA phonons implying that the ZA phonons travel
ballistically along the sample while the TA phonons travel diffusively.

Grüneisen (γ) parameters were obtained from first principle calculation by
applying a positive and negative biaxial strain. For the in-plane acoustic modes,
we find that γ does not vary much from its mean value but the out-of-plane
modes have a strong q-dependence. Our calculated γ values for Bulk-hBN at the
Γ point is ∼ 1% larger than those obtained from experiments which measures
the pressure dependence of Raman lines. γ parameters for 5LBN suggest that
due to the layer breathing modes, atoms along the perpendicular direction lose
their coherence between each layer and decrease the phonon frequencies when
under a biaxial strain.

In comparison to the real space super cell approach, lattice thermal conduc-
tivity has been calculated, both analytically and numerically, using Callaway-
Klemens formalism. To obtain analytical solution of the phonon, we make a
linear fit to the LA and TA modes, a quadratic fit to the ZA mode, and use an
averaged value for its Grüneisen parameters for the γ parameters corresponding
to the in-plane acoustic modes and an inverse square wave-vector dependence γ
for the out-of-plane modes. Theoretical results for sample length and temper-
ature dependence of κL are in good agreement with experimental observation.
The phonon BTE is then solved analytically and numerically for SLBN, BLBN,
5LBN and Bulk-h BN to calculate κL for a constant length over a wide range of
temperatures and vice versa again in good agreement with available experimental
results.

Both the theoretical approaches, i.e. real space super cell and Callaway-
Klemens, show the same magnitude for κL but the temperature dependence
by the two methods are different. The lattice thermal conductivity for these
materials are practically length independent for sample lengths greater than 100
µm which tends to their thermodynamic limit. Calculated values for κL for
BLBN and 5LBN agree very well with experiments when calculated by the
real space approach rather than by the Callaway-Klemens method. This may
be because the experimental behavior of κL for both BLBN and 5LBN tend
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to saturate at higher temperatures instead of having a maxima. However, the
Callaway-Klemens method agrees better with available experimental data for
Bulk-h BN. Further experiments could resolve this discrepancy.

Mode dependent numerical calculations using the Callaway-Klemens formal-
ism suggest that ZA modes dominate only at very low temperatures and have the
least contribution as the temperature is increased. This is in stark conflict with
our calculations based on real space super cell approach. Since the velocities and
Grüneisen parameters are extremely similar for single and bi layer boron nitride,
one would expect κL for both the systems to be similar. However, in the case of
graphene, we have a significant reduction in κL which is seen both experimen-
tally [23] and theoretically [188, 22]. The larger κL in SLBN in comparison to
BLBN using the Callaway-Klemens method was due to the symmetry put by
hand and not a consequence of the theory. This implies that the closed form of
the relaxation time used in Callaway-Klemens method is a poor approximation
having little predictive value and one must solve the BTE beyond the RTA. Our
calculations suggests that for an enhanced figure of merit, ZT , in such materials,
the sample length must be in the µm range or smaller and should be stacked on
top of each other.
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Chapter 5

Thermoelectric transport properties of
graphene/boron-nitride/graphene
heterostructure nanomaterials1

5.1 Introduction

In this chapter we present a computational study of the thermoelectric properties
of sandwiched heterostructures of Graphene and h-BN. We have used density
functional theory (DFT) based electronic structure method and Boltzmann trans-
port theory for the band electrons to calculate the electrical conductivity (σ) and
Seebeck coefficient (S). A large-scale equilibrium molecular dynamics (MD)
simulation using Green-Kubo formalism [246, 247] at constant temperatures was
used to compute thermal conductivity (κ) of these heterostructures at various
temperatures. Our calculations allow us to study electrical and thermal trans-
port in the directions parallel and normal to the plane of G/h-BN/G and thus
permit a direct comparison of our simulation results to the experimental data.
Our calculations show that for certain configurations of the heterostructured
nanomaterials the Power factor and Figure-of-merit (ZT ) are close to recent
measurements [15]. Moreover, our calculated κ for the multilayers and bulk

1Based on a publication by R D’Souza, S Mukherjee, Physica E 81, 96 (2016)

126



Chapter 5 5.2. Computational details

h-BN shows a qualitative agreement with recent experimental results of Jo et
al. [27]. Calculated κ along orthogonal directions in planar G/h-BN striped
heterostructures also quantitatively agree with previous calculations [29].

5.2 Computational details

Density functional theory
All the electronic structure calculations were carried out using Density Func-

Figure 5.1: Supercells of G/h-BN/G heterostructures with three (left), four (middle) and five (right) h-BN layers
showing three different types of arrangement of Graphene and h-BN layers. The numbers indicate thickness of the
heterostructures in Å.

tional Theory (DFT) based plane-wave method, described in section 2.1, as
implemented in the Quantum Espresso code [139], using an orthorhombic unit-
cell. The generalized gradient approximation (GGA) [128] was used for the
exchange-correlation potential and the ultrasoft pseudopotential [17] was used
to describe the core electrons. Self-consistent calculations were performed using
a converged Monkhorst–Pack k-point grid [133] of 48 × 48 × 2 with a plane
wave basis with kinetic energy cutoff of 40Ry and charge density energy cutoff
of 160Ry, respectively. The periodically repeated unit cells are separated by
a vacuum spacing of 22Å along the z-direction. This is reasonable since, the
widths are typically 104 times larger than the height of the sample [27]. We have
considered Van der Waals interaction [248, 229] between the layers. For one
h-BN layer sandwiched between two graphene layers, we have minimized the
total energy and pressure to get a lattice constant of 2.48Å and interlayer distance
of 3.21Å. h-BN layers were added at a distance of 3.21Å above the previous
layer. It should be noted that addition of layers does not change the pressure
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of the unit cell. As it has been shown that the AB stacking is the most stable
[249] the h-BN layers were fixed to the AB stacking while graphene sheets were
changed as shown in Fig. (5.1).
Equilibrium molecular dynamics for the calculations of lattice thermal con-
ductivity

Figure 5.2: The simulation cells used in our molecular dynamics study for (a) graphene/ boron-nitride striped het-
erostructure (b) Graphene/boron-nitride/Graphene layered heterostructure and (c) Bulk-Boron nitride. The yellow
balls refer to that of carbon. The blue and red balls refere to that of boron nitride.

The equilibrium molecular dynamics calculations as described in Section 2.4
were carried out using the LAMMPS code [250]. The total number of iterations
in the calculations of thermal conductivity were 105 with a time step of 1 fs. The
number of atoms in the simulation cells varied between 40000 to 60000 atoms.
The simulation cells used in the calculation of the lattice thermal conductivity
are shown in Fig. 5.2. Each of the simulations started with different random
initial velocities. The error bars in all our MD calculations are estimated from
five different sets of MD runs having these different random initial velocities.

5.3 Results

5.3.1 Electron transport coefficients of G/h-BN/G
heterostructures

The relaxation time for G/h-BN/G heterostructures are not known but are
typically in the order of 10−14sec. Hence the numerical value used here is
1× 10−14sec. Calculations were performed for all topologies as shown in Fig
5.1 but the results are almost identical except for a small change in Fermi energy
(EF ). We therefore report Seebeck coefficient, Power Factor and Figure of Merit
for only a specific arrangement as shown in Fig.5.3 a3,b3,c3. Fig. 5.3 and 5.5
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Figure 5.3: Calculated Seebeck coefficient of G/h-BN/G plotted against energy using the Mott’s formula using
equation 2.93 at various temperatures. The black horizontal line refers to the experimental value at T=300K [15].
The inset shows the Seebeck coefficient plotted against Temperature at a constant chemical potential.

refers to the Seebeck coefficient and power factor of G/h-BN/G heterostructure
having 5 BN layers as shown in Fig.5.3 c3.

Though the band gap of G/h-BN/G heterostructure is formed due to h-BN,
the Fermi level does not shift since the number of boron atoms is equal to the
number of nitrogen atoms. Further, since boron is an acceptor whereas nitrogen
is a donor, the total number of charge carriers n remains the same as that in
graphene and hence the conductance at low temperatures, which is essentially
proportional to

√
n is essentially that of graphene [5]. We therefore expect that

the form of S, which depends only on conductivity, to have a similar form as
that of graphene. In Fig. 5.3 we see that, as expected, the form of S is that of
graphene. However, at very low temperatures the Seebeck coefficient has a flat
region around the Fermi energy which is due to the band gap.

In the 40K - 300K temperature (T ) range it is seen that the conductivity de-
creases as T increases. Therefore S increases as T increases as seen in the inset of
Fig 5.3, where we plot S as a function of T at constant chemical potential. The lin-
ear dependence of S on T suggests that the mechanism for thermoelectric genera-
tion is diffusive thermopower [190]. S > 0 for chemical potentials lower than the
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Fermi energy, S = 0 at Fermi energy and S < 0 for values greater the Fermi en-
ergy.
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Figure 5.4: A plot of conductance (σ) calculated along
x-, y- and z-directions (inset) against the charge carrier
(n).

The sign of S indicates the sign of the
majority charge carriers. This is also
observed experimentally when the gate
voltage crosses the charge neutrality
point (CNP). S = 0 at the CNP. We
thus see a direct correspondence be-
tween chemical potential and gate volt-
age. Thus, the gate voltage can tune
the chemical potential. As seen in Fig
5.3, the chemical potential changes sign at the Fermi level. The effect of chem-
ical potential on S can thus be demonstrated by tuning the chemical potential
(Fermi energy EF ).

We would like to mention that we have calculated the the components of σ
along the Cartesian axes, with z-axis being normal to the plane of the G/h-BN/G
heterostructure, as seen in Fig. 5.4. Then using the Mott’s formula 2.93, Seebeck
coefficients were calculated along the principal directions Fig. 5.6. We have
obtained a finite Sz near the Fermi energy which contributes to the total Seebeck
coefficient which could be due to periodic boundary condition. We feel that the
electrical conduction along the z-axis should include contributions also from the
other two principal directions, as planar Graphene is used as the contact on both
sides of multi-layer h-BN in the experiment [15].
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Figure 5.6: Calculated components of Seebeck co-
efficient of G/h-BN/G heterostructure with five h-
BN layers along x-, y- and z-directions using the
Mott’s formula (Eq (7)). Note, the finite contribu-
tion of Sz near the Fermi energy.

Experimentally the Seebeck coefficient
of G/h-BN/G was measured by applying
a temperature gradient between the top
and bottom Graphene layers using Raman
spectroscopy [15]. For a temperature gra-
dient ∆T = 39 K at a constant thermo-
electric voltage ∆V = 4mV, they obtained
S = −99.3µV/K. This method was em-
ployed by Chen et al [15] to measure the
Seebeck coefficient of G/h-BN. To com-
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Figure 5.5: Calculated Powerfactor for different layers in G/h-BN/G. The black horizontal line refers to the
powerfactor which corresponds to the chemical potential that yields the experimental Seebeck coefficient by Chen
et al [15].

pare our calculations with that of Chen et al. [15] we fixed the chemical potential
corresponding to the experimentally measured S as shown in Fig. 5.3. The
power factor for the three different arrangements of G/h-BN/G heterostructures
are shown in Fig. 5.5. The chemical potential which corresponds to that of the
gate voltage of Chen et al [15] has been shown by the black dotted line.

5.3.2 Lattice thermal conductivity using equilibrium
molecular dynamics

5.3.2.1 G/h-BN Planar striped heterostructure

In order to test the equilibrium MD method [250] for the calculation of thermal
conductivity, we first calculated κ for two-dimensional striped heterostructures of
Graphene and h-BN with both armchair and zigzag interfaces between Graphene
and h-BN domains at T = 300K. Our simulation results for κ shown in Fig.
5.7, both parallel and perpendicular to the crystal edges as shown in the inset,
compare quite well with the earlier calculations of Kinaci et al.[29] which are
also plotted for comparison.

We have also compared the ratio κ/κ0, κ0 being thermal conductivity of
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Figure 5.7: Calculated parallel and perpendicular components of thermal conductivity of h-BN/Graphene planar
striped heterostructures with zigzag and armchair interfaces between G and h-BN domains plotted against the
width of the domains. For comparison calculations by Kinaci et al. [29] are also shown. The inset shows the
atomic arrangements in each interfaces.

pristine Graphene, and obtained this to be 0.3203 for the zigzag and 0.3273 for
the armchair interfaces, respectively. These results are in excellent agreement
with calculations performed using non-equilibrium Green’s function method for
Graphene and h-BN nanoribbons [104]. Therefore, the use of Tersoff potential
based force field was found to be satisfactorily applicable for the thermal trans-
port simulations in Graphene and h-BN based heterostructures. The calculated κ
for G/h-BN/G heterostructures for different sample thickness are given in Fig
5.9 at different T .

5.3.2.2 Bulk and multilayers of h-BN

In Fig 5.8 we show the results of thermal conductivity as a function of the tem-
perature in the range 25-400K, calculated from the equilibrium MD simulation
at constant temperature (NV T thermostat)for pure h-BN 5-, 11-layers and bulk,
and compared with the available experimental results of Jo et al [27]. In each
of the calculations, the system was first thermalized to the desired temperature
for each set of initial uniform distribution of velocities. κ was calculated for
five different sets of initial velocities and the error bar was estimated from the
standard deviation.
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We found κ increases with T and tend to saturate at T ∼ 220K for each sam-
ples of h-BN, with results for 11-layer tending towards the bulk value. Moreover,
for each of the three samples of h-BN multilayered films, κ shows maxima in the
temperature region of 200-250K. We observed an overall agreement of our MD
simulation results with recent experimental measurements [27]. For 11-layer
and bulk h-BN samples the agreement between the simulation and experimental
data is better in temperature range 25-300K, whereas for the 5-layer sample the
MD results seem to agree only in the temperature range 100-250K.
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Figure 5.8: Calculated temperature dependence of the thermal conductivity of h-BN layers of different thickness.
Experimental results [27] are shown as squares and present calculations as circles. The error-bars are calculated
from five different sets of calculations using different seeds.

Recently, several calculations have been reported on thermal conductivity
of single-layer h-BN [151, 251, 252]. Transport calculations by Lindsay et al
[151] and Ouyang et al [252], which were calculated from the phonon spectrum
using the phonon Boltzmann transport equation, indicate that κ shows a maxima
around T ∼ 150K and decreases with T . Mortazavi et al using MD simulations
have reported κmonotonically decreasing with temperature, however all reported
values are for temperatures greater than 200K. Our calculated κ for single-layer
h-BN shows a monotonic decrease with T , not shown here. The numerical value
of κ and its variation with T depends on the direct and Umklapp phonon-phonon
scattering mechanism [151] and also on the lifetime of such processes. We plan
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to investigate these effects using phonon Boltzmann transport theory from the
phonon bandstructure later.

5.3.2.3 Thermal Conductance, Power Factor and Figure-of-merit
of G/h-BN/G Heterostructures

The calculated thermal conductance (K), Power Factor (S2G) and the Figure-
of-merit (ZT ) of G/h-BN/G Heterostructures with three-, four- and five-layers
of h-BN at the fixed chemical potential are shown in Fig 5.9. The chemical
potential was fixed to obtain the experimentally observed Seebeck coefficient of
-99.3 µV/K as shown in Fig 5.3. Note, we have plotted the thermal conductance
in Fig 5.9, obtained by multiplying the thermal conductivity (κ) with the height
of the G/h-BN/G heterostructure as indicated in Fig 5.1. Similarly, for the
Power Factor (S2G), we have taken G as the electrical conductance, so that
ZT becomes a dimensionless quantity. It can be seen from Fig 5.5 that as we
increase the number of layers, the power factor increases whereas the thermal
conductivity decreases with temperature. As a result the power factor increases
with temperature. For G/h-BN/G heterostructures having 4- and 5-layers, our
calculated values agree well with the experimental results as the temperature
tends towards room temperature. The Power factor and Figure of Merit will
have the same characteristics when plotted against energy at a given temperature,
since κ is a function of only temperature.

We would like to emphasize that our calculations involve electrical transport
not strictly along the vertical direction, because the Boltzmann transport theory
yields smaller contributions to electrical conductivity along that direction com-
pared to those along x- and y-directions. We have calculated the z-component
of the Seebeck coefficient (Sz) (Fig.5.6) and found this to be finite and com-
parable to Sx and Sy close to the Fermi energy. However, this could be due
to the periodic boundary we have implemented also along z- directionwith a
vacuum of 22 between the sandwiched layers. The total Seebeck coefficient S
shown in Fig 5.3, however, shows a quantitative agreement with the experimental
data [15]. Thus, we conclude that in the thermoelectric measurements [15] the
electrical transport may not be strictly along the z-direction as the upper and
lower Graphene contacts with multilayer h-BN would allow transport channels
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Figure 5.9: Calculated temperature dependence of Thermal Conductance (K), Power Factor (S2G) and the Figure-
of-merit (ZT ) of h-BN layers of different thickness shown in the left, middle and right panels; respectively. The
available experimental data [15] in each panel at 300K is also indicated.

involving components along x- and y-directions as well. A good quantitative
agreement with experimental data also supports above conclusion.

5.4 Summary

We have shown that for three, four and five BN layers sandwiched between
Graphene layers, the Boltzmann transport theory gives accurate results for the
power factor and the Figure-of-merit, comparable to the experimental data. We
have also shown that for sufficiently large number of atoms, MD simulations us-
ing the Tersoff type potential yields results in good agreement with experiments
for thermal conductance of multilayer h-BN, laterally grown striped Graphene
and h-BN two-dimensional heterostructures and sandwiched films of Graphene
and multilayered h-BN, using the equilibrium Green-Kubo method. Our cal-
culations may be extended to include phonon bandstructure based transport
calculations and using non-equilibrium Green’s function based methods.
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Chapter 6

Thermodynamic, Electronic Structure and
resistivity of Hybrid Hexagonal
C2x(BN)1−x Two-dimensional
Nanomaterial1

6.1 Introduction

Electronic structure [86, 87, 88, 89, 90, 91, 253, 254] and phase stability cal-
culations of C2x(BN)1−x [255] have been reported earlier. In this chapter, we
calculate the phase stability of h-BN from the free energy using a solution model.
Moreover, applying the transport theory of band electrons on the DFT band-
structures we obtain the temperature dependent resistivity of C2x(BN)1−x at
different concentrations of C(or BN), which has not been addressed earlier. The
interfaces between domains are either armchair or zigzag. We have studied both
the interfaces using a 5× 5× 1 hexagonal unit cell giving rise to a hexagonal
Brillouin zone for each of the interfaces. Calculations using different unit cells
for armchair and zigzag interfaces have been reported by Bernardi et. al. [30]
and Kumar et. al. [199]. We then calculate the bandstructure, density of states,

1Based on publications by R D’Souza, S Mukherjee, Physica E, 69, 138 (2015) &
R D’Souza, S Mukherjee, T Saha-Dasgupta, Journal of Alloys and Compounds 708, 437 (2017)
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charge density and formation energy of C2x(BN)1−x. The emergence of Dirac-
cone like features are observed with increasing C concentration. Since h-BN has
a band gap of nearly 5 eV whereas Graphene is gapless at the high symmetric
K-point in the hexagonal Brillouin zone, one would expect the band gap to
decrease with increasing C concentration, ultimately becoming zero for x = 1. A
non-monotonic decreasae of the band gap was obtained for C2x(BN)1−x with in-
creasing x and the concentration dependence, for the two different interfaces, are
different. The density of states and charge density suggest that the charge transfer
effects play an important role in the formation of the band gap. Using a regular
solution model, we studied the phase stability of C2x(BN)1−x calculated from the
formation energy and estimated the order-disorder transition temperature. The
onsets of substitutional disorder were found to occur at temperatures ∼ 3850 K
and 6090 K for the zigzag and armchair interfaces, respectively. Finally, using
the Boltzmann transport theory applied to the band electrons, we calculate the
electrical conductivity (σ) from the bandstructures of C2x(BN)1−x. Obtaining the
temperature dependent resistivity ρ(T ) from σ(T ) we find, when ρ(T ) is plotted
in the logarithmic scale versus the reciprocal of temperature 1

T , a linear behaviour
as expected for semiconductors as seen experimentally for C2x(BN)1−x [14, 12].

6.2 Computational details

Density functional theory

The ab-initio DFT calculations were carried out using the Quantum espresso
code [139] on a 5 × 5 h-CBN unit cell with armchair and zigzag interfaces.
Plane wave calculations assume periodicity. To avoid interactions between the
sheets, we use a vacuum spacing of 13Å. An ultrasoft pseudopotential [17] was
used to describe the core electrons. For the exchange-correlation kernel [128]
we used the generalized gradient approximation. A kinetic energy cut-off of
40Ry was used for the plane-wave basis set and of 160Ry for the charge density,
and an accuracy of 10−9Ry was obtained in the self-consistent calculation of
total energy. Minimizing the total energy with respect to the lattice constants
by ensuring the stress on each atom is zero, the equilibrium lattice constants
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Figure 6.1: 5 × 5 unit-cell of C2x(BN)1−x with armchair interface (a, b, c, d) and zigzag interface (e, f, g, h),
between Graphene and h-BN domains, at x = 0.2, 0.4, 0.6 and 0.8; respectively. Carbon atoms are denoted by
yellow, Boron by grey and Nitrogen by blue colored balls; respectively.

were obtained. A converged Monkhorst-Pack [133] having a 6× 6× 1 k point
grid was employed in the self-consistent (SCF) calculations. At each of the
equilibrium lattice constants, for both armchair and zigzag interfaces, band
structure calculations were performed with 150 k points along the Γ-K-M-Γ high
symmetric pints in the irreducible hexagonal Brillouin zone.

6.3 Results and Discussion

6.3.1 Electronic structure and bandgap engineering of
C2x(BN)1−x having zigzag and armchair
interfaces

Our computed values of the in-plane lattice constant (a0) for graphene and
h-BN were to be 2.466Å and 2.501Å, respectively, which compare well with
those obtained from experiments. In Fig.6.2 we plot the bandstructure along
with the corresponding density of states (DOS) of hexagonal C2x(BN)1−x for
x = 0.2, 0.4, 0.6 and 0.8, for zigzag and armchair interfaces between Graphene
and h-BN domains. The total DOS include contribution from 2s, 2px, 2py and
2pz of carbon, boron and nitrogen atoms in the unit cell. For each of the atoms,
we also plot the partial density of states (PDOS) of the 2pz orbital. The DOS and
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Figure 6.2: The calculated bandstructure and the density of states (DOS) of C2x(BN)1−x at x = 0.2, 0.4, 0.6 and
0.8 for armchair (upper panel) and zigzag (lower panel) interfaces. The Fermi energy is at the centre of the band
gap. The bands (blue) are shown in the high-symmetry directions Γ-K-M-Γ in the hexagonal Brillouin zone. The
total DOS is shown as full-line for C (red), N (violet) and B (green); the corresponding projected density of states
(PDOS) of 2pz states for each atoms being shown as dashed-line with similar colors, respectively. The DOS and
PDOS are in arbitrary units.

PDOS were calculated for all non-equivalent atoms in the unit cell. The Fermi
energy was found to be in the middle of each of the energy gap between the
conduction and valence bands. The electronic structure of graphene around the
Fermi energy are dominated by the π and π∗ orbitals of carbon. The conduction
and valence bands of h-BN, above and below the energy gap are represented
by the π∗ orbital of boron and π orbital of Nitrogen [249]. The DOS plotted in
Fig.6.2 show that the nature of the bands around the energy gap of hexagonal
C2x(BN)1−x are essentially due to the 2pz states of C, B and N since the total
DOS is dominated by the PDOS of 2pz orbitals around 2.5eV above and below
the band gap at each concentration. With increase in the concentration of Carbon,
the bandstructure in Fig. 6.2 shows that the band gap of C2x(BN)1−x decreases.
The calculated band gap of undoped h-BN was 4.76eV, showing that the band gap
of C2x(BN)1−x decreases from 4.76eV as the carbon concentration is increased
till it vanishes for pristine graphene (x = 1).

For the armchair and zigzag interface between graphene and boron nitride, the
nature of the decrease of the band gap with increasing carbon concentration (x)
was found to be different and non-monotonic as seen in Fig 6.3. The minimum
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Figure 6.3: Various calculated physical properties of C2x(BN)1−x shown as a function of x, both for armchair
(blue) and zigzag (red) interfaces between Graphene and h-BN domains. (a) The minimum band gap. (b) Band
gap for the zigzag interface fitted with Eq (1), shown for present calculation (red), that of 8×8 cell (green) and that
of 16 × 16 cell (violet) of Bernardi et al [30]. (c) Formation energy ∆EB for both type of interfaces. Calculated
data are shown as open circles. Parabolic fit by functions 4 ∆H x(1 − x) are shown as dashed lines. A fit by a
function of the form H0 + H1 x(1 − x) + H2 x

2(1 − x)2 are shown by solid lines. (d) The equilibrium in-plane
lattice constant a. The dashed line refers to Vegard’s law.

band gap for the armchair interface appears near the high symmetric M-point of
the hexagonal Brillouin zone at x = 0.2 and x = 0.4. For x = 0.6, the minima of
the conduction band lies between the high symmetric K and M point having the
characteristic of an indirect band gap for the armchair interface. This behavior
changes at higher concentration of carbon. At x = 0.8, the Dirac cone-like
feature appears at the K-point, as expected since the concentration is close to
that of graphene, is seen in both interfaces, armchair and zigzag. C2x(BN)1−x

having an zigzag interfaces has the characteristic of an indirect gap material at
concentrations x = 0.2, 0.4 and 0.6. However, at x = 0.8 the direct band gap has
a value very similar to that seen in the armchair case. The spin up and spin down
components of the DOS are the same unlike reported by [86, 87, 88, 89, 90, 91]
since those calculation have been performed for nanoribbons. As we move into
the nanoribbon, the spin polarization on each atom diminishes and therefore
infinite sheets have no spin polarization on each atom. For both, armchair and
zigzag interfaces between graphene and h-BN, the calculated band gap Eg, the
formation energy ∆EB, and the equilibrium lattice constant a0 are shown in Fig.
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6.3 for C2x(BN)1−x as a function of x. For x < 0.8, the indirect band gap is
slightly smaller than the direct band at the high symmetric K-point as seen in Fig.
6.3 (a). The Dirac cone-like feature starts evolving at x ≥ 0.8 having a direct
band gap at the K-point. This has been observed in earlier published calculations
[30, 199] and is apprantely not observed in seminconductor alloys. To best
describe the x dependence of Eg for C2x(BN)1−x, we have used a fifth-order
polynomial.

Eg(x) = [EhBN
g + E0 x+ E1 x

2] (1− x) + [E2 + E3 x]x2(1− x)2. (6.1)

Where, EhBN
g is the energy gap of undoped h-BN. E0 is the optical bowing

parameter, E1, E2, E3 are the higher order corrections to the bowing parameter,
obtained by the fitting procedure given in Table 6.1. We observe that the con-
centration dependence of the band gap results of Bernardi et al [30] performed
for larger zigzag interface unit-cell, fit nicely with the form given in Eq. (6.1)
shown in Fig 6.3(b).

6.3.1.1 Formation energy and phase stability

The formation energy ∆EB plotted in Fig. 6.3(c) as a function of concentration
x, was calculated using Eq. 2.146. From the calculated formation energy, we
investigated the phase stability [256, 257] of C2x(BN)1−x by fitting the calculated
data with a parabola, expressing ∆EB(x) = 4 ∆H x(1− x), where ∆H is the
formation energy at x = 0.5. In the regular solution model, the entropy of
mixing can be expressed as point probabilities or the concentration x as shown in
Eq. 2.144. The Free energy F(T,x) is defined in Eq. 2.145. At low temperatures
F (T, x) shows a maximum at x = 0.5, with two minima symmetrically located
around x = 0.5. As the temperature is increased these two minima converge
to give rise to a single minimum at a critical temperature TC when x = 0.5.
The critical temperature was obtained from the equation for F(T,x) fulfilling the
condition for instability, i.e., d2F/dx2 < 0 and bounded by the spinodal line,
given by [256],

kBT = 8 ∆H x(1− x). (6.2)

Thus, the critical temperature, TC = 2 ∆H/kB, was estimated to be 3850K for
the zigzag and 6090K for the armchair interfaces, respectively. Therefore it is
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expected C2x(BN)1−x would be in the disordered phase above those temperatures.
A lower bound of TC can be obtained by estimating ∆H directly from interpola-
tion of the calculated ∆EB at x = 0.5, yielding the transition temperatures to be
3390K and 5060K for the zigzag and armchair interfaces, respectively.

We have also investigated the phase stability of C2x(BN)1−x by using the
fit ∆EB(x) = H0 + H1 x(1 − x) + H2 x

2(1 − x)2, which gives better than
parabolic fit shown in Fig 6.3(c) as full lines. Inclusion of such higher order
terms in ∆EB(x) leads the transition from binodal to spinodal line to occur at
temperatures lower than in the previous model. The free energy was calculated
numerically and the TC was found to be 4869K for the armchair and 3389K
for the zigzag interface, respectively (See Fig.6.4). We would like to mention
that above calculations for larger supercells are under investigation and will be
reported later.
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Figure 6.4: (color online). Calculated free energy as a function of concentration x in C2x(BN)1−x at various
temperatures for the armchair (lower panel) and zigzag (upper panel) interfaces. The red line, in each figure,
indicates the spinodal line at the critical temperature TC calculated numerically in each case. Figures in the left
panel refer to the regular solution model, ∆EB(x) = 4 ∆H x(1 − x); and those in the right refer to the higher
order fit, ∆EB(x) = H0 +H1 x(1− x) +H2 x

2(1− x)2, respectively.

The in-plane lattice constant of C2x(BN)1−x, a(x) shows a deviation from
Vegard’s law [258] in Fig. 6.3(d), which has been fitted to,

a(x) = x aC + (1− x) ahBN + Ax(1− x). (6.3)
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Table 6.1: Numerical value of the parameters in Eqs. 6.2, 6.1 and 6.3. E0, E1, E2, E3 are in eV, ∆H in eV/atom
and A in Å, respectively. The values of En without parenthesis refer to that of the band gap at K-point and those
within parenthesis to the indirect band gap, respectively.

Interface E0 E1 E2 E3 ∆H A
Armchair -5.0 -3.993 -48.698 116.768 0.262 0.028

(0.1813) (-10.823) (-76.328) (158.151)
Zigzag -16.554 18.333 11.053 -6.605 0.166 0.022

(-17.952) (25.333) (23.568) (-52.396)

Here, A is the deviation parameter for the lattice constant a, obtained from fitting.
The fitting parameters in Eqs. 6.2, 6.1 and 6.3 are given in Table 6.1.

6.3.1.2 Charge density and density of states of C2x(BN)1−x

Finally, in Fig. 6.5 we show the PDOS and the valence charge density on all
in-equivalent atoms across the armchair (Figs. 6.5a and 6.5b) and the zigzag
(Figs 6.5c and 6.5d) interfaces of C2x(BN)1−x at x = 0.6. The calculated PDOS
give a idea about the contributions coming from each in-equivalent C, B and
N atoms towards the total DOS shown in Fig. 6.5. The calculated valence
charge density (Figs 6.5b and 46.5) indicates that covalent sp-bonding nature is
preserved in C2x(BN)1−x.

The band structure and the DOS of C2x(BN)1−x are somewhat different for
the zigzag interface than armchair interface. The bands immediately above and
below the energy gap are more flat, as evidenced by a strong peaks in the DOS.
It should be noted that unlike in the armchair interface, in zigzag interface the C
atoms are terminated by either all B-atoms or by all N-atoms (Fig. 6.2). This
leads to different type of excess charge at the inter-facial C-atoms. We have
calculated this excess charge from the difference of the Löwdin charges between
the similar atoms in C2x(BN)1−x and that of undoped Graphene and h-BN (See
Fig. 6.6).

We found, a C-atom terminated by a B (N) atom at the zigzag interface would
have more negative (positive) charge than that in undoped Graphene; whereas on
the zigzag interface on the other side of the same domain the excess charge on
the interfacial C atom would be reversed. This leads to strong peaks in the DOS
above or below EF , which alternates as one goes onto atoms lying deeper in
the domain. This effect is illustrated in Fig. 6.5c where we show the calculated
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Figure 6.5: (a) : Calculated PDOS on the in-equivalent B, C and N atoms in the unit-cell. C1, C2, C3, C4
denote four C-atoms on the upper hexagon, terminated by B and N shown in (b). The PDOS referring to 2s,
2ptotal, 2pz, 2px and 2py orbitals are shown in blue, red, green, orange and violet, respectively. (b) : Calculated
valence charge density shown across the armchair interface between Graphene and h-BN domains. The contours
are in the units of e/Bohr3. (c) : Calculated PDOS on the in-equivalent B, C and N atoms in the unit-cell. C1 ...
C6 denote six C-atoms on the chain, terminated by N and B atoms on two opposite zigzag interfaces shown in (d).
(d) : Calculated valence charge density shown across the zigzag interface between Graphene and h-BN domains.
(a) and (b) refer to C0.6(BN)0.4 armchair interface, whereas (c) and (d) refer to the zigzag interface.

PDOS on C-atoms going from one end of the zigzag interface to the other end.
Comparing the excess charges on the interfacial C atoms, for both armchair and
zigzag interfaces, we found higher is this excess charge, larger is the band gap
Eg.

Present calculations may be extended to include higher order corrections to
the exchange-correlation energy using HSE [259] or GW [260] methods to check
the validity of our results. However, the GGA exchange-correlation kernel used
in present calculations yields the ground state physical properties of Graphene
and h-BN, in good agreement with experimental results.
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Figure 6.6: (color online). The charge transfer calculated from the calculated Löwdin charges on each inequivalent
atoms in the C2x(BN)1−x unit-cell for the armchair (left panel) and zigzag (right panel) interfaces between the
Graphene and h-BN domains. For each concentration the charge transfer is shown on a set of C, B and N atoms,
in a chain or hexagonal ring, which constitute the inequivalent atoms.

6.3.2 Resistivity of C2x(BN)1−x

Now we turn to our results of the resistivity ρ(T ) of C2x(BN)1−x from the
transport calculations. The resistivity of CBN nanomaterials was measured
earlier [14, 13]. It was reported that ln(ρ) varies linearly with T−1 for different
concentration of B and N, indicating that CBN is semiconducting. The band
gap Eg of CBN was estimated from Eq. (6.4) [261]. In Fig. 6.7 we show the
results of ln(ρ) against T−1, assuming τ = 10−14s, for the zigzag interface of
C2x(BN)1−x at x = 0, 0.2, 0.4, 0.6, 0.8, 1, in the temperature range of 200K to
800K. The calculated data can be fitted very well to straight lines as shown in
Fig 6.7 and the band gap Eg at each concentration was calculated from the slope
of the lines using the relation,

ρ(T ) = ρ∞ exp

(
Eg

2kBT

)
. (6.4)

Here, ρ∞ is a constant value of resistivity at temperatures tending toward infinity.
As mentioned earlier the k-point mesh had to be enhanced to 150× 150× 1 for
pure Graphene (x = 1) to capture the Dirac-point correctly. Also, for the pure

145



Chapter 6 6.3. Results and Discussion

0.0005 0.001 0.0015 0.002 0.0025 0.003

T
-1

(K
-1

)

-20

-10

0

10

20

ln
(ρ

) x=0.8

x=0.6

x=0.4x=0.2

x=1

x=0

40x40x1

150x150x1

400500600800 T(K)

Figure 6.7: ln(ρ(T )) plotted against T−1 for C2x(BN)1−x at different concentrations calculated from the Boltz-
mann transport theory [31] at different concentration.

h-BN we had to calculate ρ(T ) at higher temperatures to obtain the measurable
slope as shown in Fig. 6.7. In Table 6.2, the band gap Eg of C2x(BN)1−x

calculated from the transport theory and those calculated directly using DFT
are compared. We find an overall good agreement. It should be mentioned that
the numerical value of the relaxation time τ does not affect the the band gap
estimation from the slope of Fig 6.7, since the constant ρ∞ in Eq (6.4) will
only shift the origin of the lines in Fig. 6.7 and not affect their slopes. Any
discrepancy of the calculated Eg should thus come from inadequate k-point
mesh. To our knowledge, this is apparently the first calculation of ρ(T ) for the
semiconducting nanomaterial C2x(BN)1−x from Boltzmann transport theory.

Table 6.2: Band gap calculated by Bandstructure and Boltzmann transport theory for C2x(BN)1−x for zigzag
interface at different concentrations.

x Bandstructure Using Eq. (7) and Fig. (4)
(Quantum Espresso) (Boltztrap)

0 4.557 4.87
0.2 1.919 2.63
0.4 1.008 1.97
0.6 0.709 1.53
0.8 0.812 1.153
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6.3.3 Thermodynamic stability of C2x(BN)1−x and
C2x(BN)1−x nanoribbons

6.3.3.1 First-principles study of zig-zag and arm-chair interfaces
between strips of h-BN and graphene

In order to study the phase stability of h-CBN, we first computed the cohesive
energy(∆E) of (C2)x(BN)1−x, which is also termed as mixing energy since it is
related to the energies of the alloy related to the energies of pristine graphene
and boron nitride. The negative value of ∆E indicates tendency to form homoge-
neous solid solution while positive value of ∆E indicates the tendency to phase
separate. For each concentration x, we calculated the mixing energy per formula
unit (f.u.) of the system using DFT, which is given by the following formula
shown in Eq. 2.146, ∆EB for different values of concentration, x is shown in
left panel of Fig. 6.8, for the arm-chair and zig-zag interface. First of all, we
find that mixing energy is positive in all cases, suggesting phase segregation
between h-BN and graphene, in conformity with the literature [262, 263, 200].
Very interestingly we find that the mixing energy is substantially reduced in
case of arm-chair interface compared to zig-zag interface. This reduction is
most effective at x = 0.5, for which the reduction is about 30%. The difference
in the mixing energy between the armchair and zizag interfaces arise because
of unequal number of CN and CB bonds per unit length along the interface.
We have estimated the number of such bonds to be 1

a0
for the zigzag interface

while for armchair interface is 2√
3
· 1
a0

, where a0 is the relaxed lattice constant of
(C2)x(BN)1−x.

From the knowledge of mixing energy, the phase stability of (C2)x(BN)1−x
can be computed from a mean field approach, using the so-called regular solution
model. The configuration entropy of mixing is defined as Eq. 2.143. Hence for
(C2)x(BN)1−x alloys, the entropy of mixing is given by Eq. 2.144 [262]. The
free energy F (T, x) is then given by Eq. 2.145. ∆E(x) is the mixing energy,
as plotted in left panel of Fig 6.8. The critical temperature within the regular
solution model can be obtained from the condition expressed in Eq. 2.147.
Fitting the mixing energy to the analytical form, ∆E = 1

bSech[a(x − 1
2)], it

can be shown that the critical temperature will be given by TC = a2

8bkB
. Fitting
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Figure 6.8: Left panel: The mixing energy of (C2)x(BN)1−x hybrid for the arm-chair and zig-zag interfaces,
plotted as a function of the concentration, x. The lines are the fit of the calculated data points of the analytical
form (see text). Right panel: Mean-field phase diagram of (C2)x(BN)1−x as a function of the composition range.
For each composition, the phase below the line is the segregated phase, while the phase above is the solid solution
phase.

parameters for x=0.5, for arm-chair and zig-zag interfaces were found to be
a = 1.208, b = 1.511 and a = 1.720, b = 1.087 respectively, resulting in
a critical temperature of 1400 K and 3948 K. Our computed value of critical
temperature for zig-zag interface is in good agreement with the value obtained
previously in literature using cluster expansion technique and Monte Carlo,[263]
which did not take into account the specficity of the interface geometry. The
plot of critical temperatures for the arm-chair and zig-zag interfaces for different
values of concentration x is shown in the right panel of Fig 6.8. It follows
the same trend as the mixing energy. Notably about a 65% suppression of the
the critical temperature for segregation is obtained in the arm-chair geometry
of the interface at x = 0.5, compared to that of the zig-zag geometry. We
note that the computed temperatures for arm-chair interfaces are substantially
smaller compared to melting point of (C2)x(BN)1−x hybrids, which can be
approximately estimated from the melting points of h-BN and graphene, which
are about 3300 K for h-BN and 4200 K for graphene. Thus if the (C2)x(BN)1−x
hybrids can be prepared with selectively chosen arm-chair interfaces, it may
be possible to arrive at a homogeneous solution of h-BN and graphene, for an
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appreciable range of temperature.

6.3.3.2 Calculation of Spinodal line
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Figure 6.9: Left panel: Spinodal lines for the infinite (circles) sheet, arm-chair (square) as well as zig-zag (triangle)
edged nanoribbon of (C2)x(BN)1−x, calculated by MC simulation. Shown are the data for nanoribbons of width
8 u.c. The lines are guide to eye. Right panel: Calculated transition temperature at x = 0.5 plotted as a function
of the inverse of the width of the nanoribbon, for the zig-zag (triangle) and arm-chair (square) edged nanoribbons.
The width is measured in terms of number of row of atoms counted along the transverse dimension of the ribbon.
Two rows of atoms constitute a unit cell. The data point at zero of the x-axis corresponds to the value obtained for
the infinite sheet.

In order to calculate the spinodal line based on MC results, we first defined
a suitable order parameter in the following manner. If the number of nitrogen
nearest neighbors of boron is nb, we define an order parameter on each boron to
be ηpb = nb

3 . Similarly, if the number of boron nearest neighbors of nitrogen is bn
, we define an order parameter on each nitrogen to be ηpn = bn

3 . We then define
an average order parameter 〈η〉 for the system as 〈η〉 = 1

NB+NN

∑
i∈B,N

ηpb+ηpn
2 ,

which is averaged over all the nitrogen (NN ) and boron (NB) atoms in the
simulation cell. We found that at low temperatures the value of the order
parameter increases as the system evolves from an initial random configuration
to a final configuration, while at higher temperatures the order parameter evolves
close to that of the initial random configuration. After a critical temperature the
system accepts any exchange of BN and C dimers keeping the order parameter
the same as the random configuration. We defined this temperature as the
critical temperature. We repeated this procedure for various concentrations
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Table 6.3: Calculated Bond energies of h-CBN infinite sheet (middle column) and zig-zag nanoribbon (right col-
umn) for different pairs (left column), obtained from DFT calculations. Similar values are obtained for arm-chair
nanoribbon

Type Eb(eV ) Eb(eV )
Bulk Outer most row of nanoribbon

CC -0.919 -1.30
BN -0.921 -1.45
CB -0.654 -1.27
CN -0.314 -0.85

thus obtaining the spinodal line. The points above the spinodal line refers to
the disordered solid solution phase while those below refers to the segregated
phase. The left panel of Fig. 6.9 shows the spinodal line for the infinite sheet
of (C2)x(BN)1−x, and the nanoribbons of (C2)x(BN)1−x having width of 8 u.c.
with zig-zag and arm-chair edges. For the infinite sheet, results were obtained
for about 20000 atoms in the periodic unit cell, and 2 × 105 MC steps were used
to reach the equilibrium. For the nanoribbons, the number of atoms in the lateral
direction with periodic boundary condition was chosen to be 10000. We find the
critical temperature of phase segregation is substantially high in case of ribbons
compared to the infinite sheet, which makes it comparable to the corresponding
melting point. This observation that the critical temperature of ribbons being
larger than that of infinite sheets is rationalized by the strengthening of bond
strengths at edges compared to bulk values (See Table 6.3).

In case of infinite sheet, with interfaces of mixed character the calculated
transition temperatures though less than that of the ribbon geometries are high
enough, prohibiting mixed solution of h-BN and graphene under normal con-
dition, unless the concentration is very low. In the right panel, we show the
variation of the critical temperature at x = 0.5, as a function of the width of
the nanoribbon for both zig-zag and arm-chair cases. We find the transition
temperature for arm-chair is systematically less than that of the zig-zag nanorib-
bon with the difference being larger for ribbons of smaller widths. This is in
line with our observation from mean-field study of infinite sheet that transition
temperatures are suppressed in case of arm-chair interface compared to that of
zig-zag interface.
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6.3.3.3 MC snapshots

Figure 6.10: Snapshots of equilibrium configuration obtained in MC simulations at T = 300 K for (C2)x(BN)1−x
infinite sheet using an hexagonal (above) and orthogonal (below) super-cell with x = 0.2, 0.4, 0.6 and 0.8. The
color convention of the balls is same as in Fig 2.5.

Figure 6.11: Snapshots of equilibrium configuration obtained in MC simulations at T = 300 K for an arm-chair
and zig-zag edged (C2)x(BN)1−x nanoribbon with x = 0.2, 0.4, 0.6 and 0.8. The color convention of the balls is
same as in Fig 2.5.

Considering the case of infinite (C2)x(BN)1−x sheet, the achieved equilib-
rium configurations at room temperature are shown in Fig 6.10, for x = 0.2, 0.4,
0.6 and 0.8. In all cases, we find that depending on the concentration, the final
configuration consists of either nanopatches of C atoms embedded in matrix of
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BN atoms or BN nanopatches, embedded in the matrix of carbon, suggesting the
typical case of segregation. The edges formed between BN and C atoms turned
out to be of mixed character with dominance of zig-zag boundaries over arm-
chair. Thus, unless enforced through special growth condition, the (C2)x(BN)1−x
sheet tends to segregate with creation of edges with mixed character, as observed
in initial experiments.[14] We further find from the snapshots that in case of
ribbon geometry the BN atoms tend to segregate at the edges forming extending
phase segregated domains running along the lateral direction of the ribbon, with
carbon atoms in general positioned towards the central part of the ribbon. Fig.
6.11 shows the achieved equilibrium configurations for a arm-chair and zig-zag
edged nanoribbon at room temperature for x = 0.2, 0.4, 0.6 and 0.8.

6.3.4 Bandgap Engineering in (C2)x(BN)1−x including
mixed interfaces

Figure 6.12: (a) Orthorhombic BZ with high symmetry points. (b,c,d): Band structure of (C2)x(BN)1−x with x
= 0.1, plotted along the high-symmetry points of the BZ corresponding to the orthorhombic cell. (b,c) show the
band structure for arm-chair and zig-zag interfaces, while (d) shows the band structure for the mixed interface. The
corresponding interface geometries are shown by the side of band structure plots. The color convention of the balls
in these figures is same as in Fig 2.5. (e): The band gap values plotted as a function of varying concentration, x.
The circles, squares and triangles represent the data corresponding to mixed, arm-chair and zig-zag interfaces.

Finally, we investigate the influence of the interface geometry on the band gap
engineering. In the study described so far, we have considered selectively created
zig-zag type interface, or arm-chair type interface, and freely evolved interface
generated in MC simulation which turned to be of mixed kind. Therefore a
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systematic study of electronic structure of the composite structures possessing
these different interfaces i.e. armchair, zigzag and patches (mixed combination of
zigzag and armchair) is important and necessary. These results may throw light
on the underlying physics of band-gap engineering in optoelectronic devices.

In the upper middle, upper right and lower middle panels of Fig 6.12, we
show the band structure of (C2)x(BN)1−x hybrids considering the zig-zag, arm-
chair and patchy interfaces for x = 0.1. In lower right most panel we also show
the variation of band gap as a function of varying concentration x for each of
these interface geometries. From the three band structure plots it is evident that
in all different cases of interface geometries the band-gaps are direct band-gaps
and hence an electron can directly emit a photon without a change in momentum,
giving such materials a high optical absorption. This aspect continues for other
x values as well. A significant difference in the bandstructure of patchy interface
compared to that of zigzag or armchair interfaces is that the bands are almost flat
in case of patchy structure, while there is appreciable dispersion for the zig-zag
or arm-chair interface, arising due to extended connectivity. This in turn implies
the quenching of kinetic energy of electrons for the patchy interfaces amounting
localization of the electrons at the states close to valence band maximum (VBM)
and conduction band minimum (CBM). For the plot of the band gap, we further
find that for a given concentration the band-gaps depend crucially on for the
interface geometry. Since the band along YS (XS) direction in the arm-chair
(zig-zag) interface is flat, we believe that the graphene nanoribbon geometry
embedded in the CBN sheet mainly determines the entire low-energy band
structure [264]. For a zig-zag interface, the closing of the band gap and a metallic
behavior is obtained already for a concentration of x = 0.5, with significant
suppression of band-gap at a concentration of x = 0.25. On the other hand,
both for arm-chair and mixed interfaces, band gap is not closed even with large
substitution of carbon atoms e.g. x = 0.9, giving rise to a large concentration
window available for band gap tuning.

153



Chapter 6 6.4. Summary

6.4 Summary

In this chapter, we have presented a detailed first-principles calculation of the
band structure, DOS, the band gap and the formation energy of C2x(BN)1−x at
different concentrations. From the formation energy, we have also investigated
the phase stability of the material using a regular solution model. Although
we have used only the single-site probabilities for the entropy, which can be
improved further by incorporating the pair or cluster probabilities, we have
given an estimate of the transition temperature for the order-disorder transition
in C2x(BN)1−x, apparently for the first time. We have calculated the resistiv-
ity of C2x(BN)1−x using Boltzmann transport theory and have estimated the
band gap of this semiconducting nanomaterial at different concentrations which
agrees with earlier experimental observations. Our calculated DOS and PDOS
should motivate further angle resolved photoemission spectroscopic (ARPES)
measurements on this technologically important nanomaterial.

Further, we have studied theoretically the influence of various geometrical
shapes of the interfaces formed between phase segregated graphene and h-BN
on the properties of h-BN substituted graphene systems. For this purpose we em-
ployed a mean-field regular solution model as well as Monte Carlo simulations
of first-principles derived models. Our calculations show a rather strong depen-
dence of the interface geometry both on the phase stability and the band gap
engineering, the latter being the original motivation for studying graphene-BN
hybrid systems.

We find a significant suppression of the segregation temperature for the arm-
chair shaped interfaces, giving rise to the possibility of achieving homogeneous
solution of graphene-BN alloy phase if extended arm-chair interfaces can be
created selectively. We further found achieving such homogeneous solution
phase becomes progressively difficult upon reduction of dimensionality, in mov-
ing from infinite sheet to nanoribbons of (C2)x(BN)1−x of smaller and smaller
widths.

Our study on band structure showed for band gap tuning, arm-chair or mixed
interfaces are better candidates compared to zig-zag interface. For the later the
gap is significantly reduced and closes completely beyond a substitution limit of
0.5. On the other hand, the band gap remains finite for the arm-chair or mixed
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interfaces even for high level of substitution of BN with 0.9 of carbon atoms (the
highest value studied in the present study). Our band gaps have been calculated
using GGA exchange-correlation functional which is expected to underestimate
the values of the band gap, but the calculated trend should be robust, as has been
shown in the study employing both hybrid functional and GGA functional.[265]

Finally, our thorough and extensive study considering different possible
interfaces in bulk as well as reduced dimensionality in (C2)x(BN)1−x composite
systems should provide an useful insight on the interfacial geometry effect on
properties. Given the experimental possibility of control on phase stability of
(C2)x(BN)1−x composite systems using supported and patterned substrates,[266]
it might be possible to selectively create interface of one type over other with
desired properties. In this context, band structure and stability of various isomers
of 2D infinite sheet of (BN)m(C2)n composites have been studied from the
view point of chemical concepts of conjugation and aromaticity,[265] which
also pointed out that the relative widths and arrangement of graphene phases
in embedded h-BN matrix in an infinite sheet will be crucial in realizing BN
substituted graphene systems with desired band gap. Our alternative approach
of study reconfirms that idea, and additionally shows the effect of reduced
dimensionality which is detrimental to achieve homogeneously mixed state.
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Chapter 7

Conclusion and Future outlook

7.1 Conclusion

In this thesis we have studied, using first-principles DFT methods without
any adjustable parameters, several transport and thermodynamic properties of
two-dimensional materials. Different theoretical frameworks are used to study
properties such as electrical conductivity, resistivity, mobility, Seebeck coeffi-
cients, Figure of merit, Grüneisen parameters and lattice thermal conductivity.
The theoretical frameworks include density functional theory, density functional
perturbation theory, linearized Boltzmann transport theory for both electrons
and phonons and molecular dynamics. The detailed descriptions for each of the
theoretical frameworks are carried out in chapter 2. Most of the work in this
thesis is concerned with solving the linearized Boltzmann equation for electrons
and phonons to calculate transport parameters.

In Chapter 3, we examine important characteristics of monolayer and bilayer
graphene. We find that the charge density dependent electrical conductivity
shows a

√
n behavior which is seen in experiments for annealed graphene. The

other characteristic that we find which agrees well with experiments is that the
Seebeck coefficient increases linearly with temperature for a constant chemical
potential. Further for a small range in chemical potential, we have demonstrated
the Bloch-Grünesien behavior of resistivity in graphene. Our results show
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that at temperature higher than Bloch-Grünesien temperature, the resistivity
increased linearly while at lower temperatures it displayed a ∼ T 4 behavior, a
characteristic of a two-dimensional electron gas. Mobility showed an order of
magnitude decrease when doped with impurities and at high concentrations, the
√
n behavior changed to ∼ n behavior. We have shown that doping graphene

with a boron nitride dimer increases the Seebeck coefficient by two-folds and
also decreases the lattice thermal conductivity thus proffering a new method to
increase the figure of merit of graphene based devices. Moreover, we calculated
the phonon dispersion, Grüneisen parameter and lattice thermal conductivity
and found our results to be in excellent agreement with available experimental
data. We calculated the lattice thermal conductivity using the Callaway-Klemens
method in the relaxation time approximation and an iterative real space method
beyond the relaxation time approximation. Our lattice thermal calculations
suggest that for two-dimensional materials, one must go beyond the relaxation
time approximation to accurately describe the length, temperature and mode
dependent lattice thermal conductivity. A similar study was done for multilayer
hexagonal boron nitride in Chapter 4.

In Chapter 5, we calculated the figure of merit of boron nitride sandwiched
between graphene heterostructures. The electronic transport parameters was
calculated using the linearised Boltzmann equations while the lattice thermal
conductivity were calculated using equilibrium molecular dynamics. For a
chemical potential corresponding to the experimental gate voltage, our results
for four- and five- layered boron nitride sandwiched between graphene were
in excellent agreement with the available experimental data. Our result for
three layered boron nitride sandwiched between graphene sheets showed the
highest figure of merit in comparison with the four and five layered boron nitride
heterostructures.

In Chapter 6, the thermodynamic properties were calculated using the reg-
ular solution model (mean field approximation) and a Monte Carlo simulation
for graphene doped with boron nitride having an armchair, zigzag and mixed
interfaces between graphene and boron nitride. An appreciable repression of the
segregation temperature was seen in armchair interfaces. These homogeneous
solutions become even more difficult to achieve upon reducing their dimension-
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ality. Our electronic band structure for each of these materials demonstrates that
all band gaps are direct, implying such materials have high optical absorption.
Since the band gaps vary due to their constituents’ concentration as well as
their interface geometry, boron nitride doped graphene (and carbon doped boron
nitride) are extremely useful for band gap engineering. We have also shown
in Chapter 6, the logarithmic resistivity of doped graphene having zigzag and
armchair interfaces when plotted against the inverse of temperature was shown
to be linear, demonstrating the semiconducting behavior of such materials.

7.2 Future Outlook

All transport calculations in this thesis have assumed that the electronic relaxation
time is a constant and isotropic, viz, independent of direction. However in general,
the relaxation time is a function of temperature and depends on the momentum
of the electron and hence the direction of the Brillouin zone. Durczewski et
al. [267] have devised a formalism to calculate the electron relaxation time and
Zahedifar et al. [268] have used this model to calculate the figure of merit of half-
Heusler semiconductors. Using similar techniques, we plan to investigate the
electronic transport properties without treating the relaxation time as a constant
and without the isotropic approximation. Also, our transport calculations are
semi-classical and do not take contacts into account. We therefore plan to use a
quantum transport technique, the non equilibrium green function formalism, as
done by various groups, viz, Lu et al. [269] and Xu et al. [270] have calculated
the thermal transport in grain boundaries of graphene, and graphene junctions
and quantum dots, respectively, using the non-equilibrium Green’s function
method [271]. Though most of the results for the materials studied in this thesis
are in good agreement with experiments, the figure of merit come out extremely
small. We therefore plan to theoretically predict a material having a large figure
of merit having realistic applications in solid state devices.

This thesis does not consider magnetic properties of two dimensional ma-
terials, which is an important property that needs to be explored. In this con-
nection, we have already initiated work on layered Organic-Inorganic hybrid
perovskites. Hybrid organic-inorganic materials are not simple physical mixtures
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but, molecular or nano-composites with organic and inorganic components, with
at least one of the component domains having a dimension ranging from a few
angstroms to several nanometers. Since they mix at the microscopic scale these
hybrid materials show characteristics which are in between that of two origi-
nal phases or show new properties which are absent in either of their building
blocks. Specifically, we have considered layered materials that have a general
formula of (RNH3)2AmX3m+1, where R is an alkyl, A is a metal cation and
X is a halide. The number of metal cation layers between the two sheets of
organic chains is indicated by a variable, “m”. Consider the two extreme values
of m. For m=∞ the structure becomes a three-dimensional bonded perovskite
crystal, while for m = 1 the structure becomes a quantum well[47]. The com-

Figure 7.1: Unit cell of Bulk (left) and a single layer (right) of 3-ammoniumpryidinium (3AP) tetrabromocuprate
(CuBr4)

pounds, 3-ammoniumpryidinium (3AP) tetrabromocuprate (CuBr4) and 3AP
tertrachlorocuprate (CuCl4) in this family of compounds are of special interest
because these non centrosymmetric crystals whose crystal structure consists
of the two copper halide layer perovskites might show some novel magnetic
properties. These copper halide layer perovskites were first reported in 1988
[272]. However, predictions about their magnetic properties are limited as there
exists inadequate data to make concrete correlations for the tetrahedrally dis-
torted anions. These copper halide layer perovskite salts are expected to show
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a ferromagnetic exchange inside the layer and antiferromagnetic exchange be-
tween the layers. Hence in order to explain the magnetic behaviour of 3APCuBr4

and 3APCuCl4 microscopic investigations of these materials are needed. Similar
to the paper reported by Letian Dou et. al. [47], these layered structures are
held together by weak hydrogen bonds and hence can be crystallized into 2D
layer perovskite structures which is expected to play a very important role in
the development of low-dimensional magnetism. We are currently studying the
electronic and magnetic properties of these materials by varying the number of
their layers using DFT.
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Appendix A

Tight Binding model of graphene
(Referred in section 1.4 and 3.3.2)

In the tight binding approximation, the two Bloch functions are constructed
from the atomic orbitals for the two inequivalent atoms, A and B. Considering
only the nearest-neighbor interactions, the diagonal terms in the tight binding
model for the π-band consists of only an integration over a single atom therefore
HAA = HBB = ε2p. The off-diagonal matrix elements are calculated considering
the three nearest-neighbor B atoms with respect to atom A. We denote the vectors
as
−→
R1,
−→
R2 and

−→
R3 and their contribution to the off-diagonal matrix is given by,

HAB = t(eik·R1 + eik·R2 + eik·R3) (A.1)

With
−→
R1 = (1, 0)a,

−→
R2 = (−1

2 ,
√

3
2 )a and

−→
R3 = (−1

2 ,
−
√

3
2 )a, Eq. A.1 becomes

HAB = t(eiakx + 2e
−iakx

2 cos

(√
3

2
aky

)
) = f(k) (A.2)

The off-diagonal matrix becomes,

H =

(
0 tf(k)

f ∗(k) 0

)
(A.3)
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In order to understand the term Dirac cone, we recall the Dirac equation,

−i~(σx
∂

∂x
+ σy

∂

∂y
+ σzm) =

(
m px − ipy

px + ipy −m

)
(A.4)

Where σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0

0 −1

)
known as the Dirac

matrices.
We now expand the off-diagonal elements around the K-point (2π

3a ,
2π

3
√

3a
),

Kx = 2π
3a + qx and Ky = 2π

3
√

3a
+ qy. Therefore,

cos(akx) = cos

(
(
2π

3a
) + qx

)
= cos

(
2π

3

)
cos(qxa)− sin

(
2π

3

)
sin(qxa)

= −1

2
(1− (qxa)2

2
)−
√

3

2
qxa (A.5)

and

sin(akx) = sin

(
(
2π

3a
) + qx

)
= sin

(
2π

3

)
cos(qxa) + cos

(
2π

3

)
sin(qxa)

=

√
3

2
(1− (qxa)2

2
)−
√

1

2
qxa (A.6)

Similarly,

cos

(
kxa

2

)
=

1

2
(1− q2

xa
2

8
)−
√

3

2
qxa

sin

(
kxa

2

)
=

√
3

2
(1− q2

xa
2

8
)− 1

4
qxa

cos

(
kya

2

)
=

1

2
(1− 3qya

2
−

3q2
ya

2

8
) (A.7)

Writing f(k) in terms of trigonometric functions and substituting Eq. A.5 to Eq.
A.7 in Eq. A.2 we get,

f(qx, qy) =
−3qx

4
qxi−

3
√

3

4
qx −

3

4
qy +

3
√

3

4
qyi

+
3

8
qxqyi+

3
√

3

8
qxqy +O(q2

x, q
2
y)

f(qx, qy) ≈
3qxi

2
(
−1

2
+ i

√
3

2
) +

3qy
2

(
−1

2
+ i

√
3

2
)

f(qx, qy) =
3

2
ei

2π
3 (qxi+ qy) (A.8)
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Substituting Eq.A.8 in Eq. A.3, we see the form of the Hamiltonian is exactly
like that of the Dirac equation with m = 0. Diagonalising the Hamiltonian
yields,

Epz = ±3t

2

√
q2
x + q2

y = ±3t

2
|q| (A.9)

which is an equation of a cone. Hence the term Dirac-cone.
The σ-bands can be calculated using the method described in the book

Physical properties of carbon nanotubes[189]. We have calculated the matrix
elements for each of the matrix elements,

H11 =
〈
2sA
∣∣H ∣∣2sB〉 = Hss[e

iakx√
3 + 2e

−iakx
2
√

3 cos

(
aky
2

)
]

H12 =
〈
2sA
∣∣H ∣∣2pBx 〉 = Hsp[−e
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3 + e−
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2
√

3 cos

(
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2

)
]
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√
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2
√
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(
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2

)
]
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Appendix B

Derivation of Mott Formula (Referred in
Equation 2.93)

In this section, we derive the Mott Formula by using the Sommerfeld expansion
around the Fermi energy. For any smoothly varying function of ε, say H(ε), the
Sommerfeld expansion is given by,∫ ∞

−∞

H(ε)

eβ(ε−µ) + 1
dε =

∫ µ

−∞
H(ε)dε+

π2

6
k2BT

2H
′
(µ) +O

(
k4BT

4

µ4

)
+ · · ·

=

∫ ∞
−∞

H(ε)f(ε)dε (B.1)

here O refers to the limiting behavior of higher even orders and f is the Fermi-
Dirac distribution function. It must be noted that the function H(ε) should
vanish at, ε → −∞. The definition of the thermoelectric linearized Seebeck
coefficient is expressed as, σS = v [31]. We have shown in section 2.91 that
the velocity of the band electron is expressed as v = 1

eT

∫
σ(ε)(ε− µ)∂f∂εdε. To

make the velocity term look like Eq. B.1, we use the following algebraic trick.
We integrate

∫∞
−∞ f(ε)H(ε)dε by parts,∫ ∞

−∞
f(ε)H(ε)dε =

[
f(ε)G(ε)

]∣∣∣∞
0
−
∫ ∞
−∞

f ′(ε)G(ε)dε (B.2)

Where G(ε) is the derivative of H(ε). Since the Fermi-Dirac function vanishes
at the limits, the first term in the above expression vanishes. Therefore, Eq. B.2
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becomes, ∫ ∞
−∞

f(ε)H(ε)dε = −
∫ ∞
−∞

f ′(ε)G(ε)dε (B.3)

With H(ε) = σ(ε)(ε − µ), ∴ G(ε) = σ
′
(ε)(ε − µ) + σ(ε). Using Eq.B.3, the

velocity expression becomes,

σS = v =
1

eT

∫
σ(ε)(ε− µ)f

′
(ε)dε

= − 1

eT

∫
[σ
′
(ε)(ε− µ) + σ(ε)]f(ε)dε (B.4)

We now expand the conductivity term as a Taylor series around the Fermi energy,
σ(ε) =

∑∞
0

1
m!

[
dmσ
dεm

]∣∣∣
µ
(ε− µ)m,

σ(ε) = σ(µ) + σ
′
(ε)(ε− µ) +O(ε− µ)2 (B.5)

The chemical potential at the Fermi energy is zero. Therefore the first term in
Eq.B.5 vanishes. If we truncate the expansion to the second term, the conductivity
becomes

σ(ε) = σ
′
(ε)(ε− µ) (B.6)

Substituting Eq. B.6 in Eq. B.4, we get,

σS = − 2

eT

∫
σ(ε)f(ε)dε (B.7)

Eq. B.7 is now in the form of Eq. B.1. Therefore,

σS = − 2

eT

[ ∫
σ(ε)dε+

π2

6
k2
BT

2σ
′
(ε)
∣∣∣
µ

]
(B.8)

The first term vanishes becomes the conductivity vanishes at the limits of the
integral. Therefore, Eq. B.8 yields the Mott Formula,

S = −π
2k2
BT

3e

σ′(ε)

σ(ε)

∣∣∣∣
µ

= −π
2k2
BT

3e

d(lnσ(ε))

dε

∣∣∣∣
µ

(B.9)
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Appendix C

Derivation of irreducible representations
(Referred in Chapter 4)

We define the reducible representation (Γred) by placing three vectors on each
atom in the unit cell which will obey the following rules when operated by a
symmetry transformation.

(a) If a vector is not moved (reversed) by an operation, it contributes 1 (-1) to
χ.

(b) If a vector is moved to a new location by an operation, it contributes 0 to
χ.

where χ is the character in the reducible representation. Our reducible representa-
tions (Γred) are shown in the column before every new point group representation
in table C.1. Using the reduction formula, ai = 1

g

∑
χRχIR, where ai is the

number of times an irreducible representation contributes to the reducible rep-
resentation, g is the total number of symmetry operations for a particular point
group and χR (χIR) is the corresponding character in the reducible (irreducible)
representation, we derive the irreducible representations.

Since the basis play an important role in identifying if the Raman or Infrared
modes are active or not, one must understand how the basis can be used to derive
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Appendix C. Derivation of irreducible representations
(Referred in Chapter 4)

Table C.1: The point group representation for SLBN, BLBN, 5LBN and Bulk-hBN at the Γ point in the BZ. The
irreducible representation is obtained from the reducible representation ΓXred of the system X using the reduction
formula.

D6h E 2C6 2C3 C2 3C
′

2 3C
′′

2 i 2S6 2S3 σh 3σv 3σd Basis
A2u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 z
B1g 1 -1 1 -1 1 -1 1 1 -1 -1 -1 1 yz(3x2 − y2)
B2g 1 -1 1 -1 -1 1 1 1 -1 -1 1 -1 xz(x2 − 3y2)
E2g 2 -1 -1 2 0 0 2 -1 -1 2 0 0 {x2 − y2, xy}
E1u 2 1 -1 -2 0 0 -2 1 -1 2 0 0 {x, y}
Γbulk−hBNred 12 0 0 0 0 -4 0 -8 0 4 4 0
ΓSLBNred 6 0 0 0 -2 0 0 -4 0 2 0 2
D3d E 2C3 3C

′

2 i 2S6 3σd

A2u 1 1 -1 -1 -1 1 z
A1g 1 1 1 1 1 1 z2

Eg 2 -1 0 2 -1 0 {xz, yz}
Eu 2 -1 0 -2 1 0 {x, y}
ΓBLBNred 12 0 4 0 0 0
D3h E 2C3 3C

′

2 σh 2S3 3σv

A
′

1 1 1 1 1 1 1 z2

A
′′

2 1 1 -1 1 1 -1 z
E
′

2 -1 0 2 -1 0 {x, y}
E
′′

2 -1 0 -2 1 0 {xz, yz}
Γ5LBN

red 30 0 10 2 -4 -2

the character table. Here we derive the characters for three reproducible represen-
tation from their respective basis. The Mulliken symbol for the representations
are defined as follows. All one-dimensional representations are designated with
either A or B, two-dimensional as E, three dimensionals as T, four as G, five as
H and so one. The subscripts are defined as follows. (i) A one-dimensional irre-
ducible representation which are symmetric with respect to rotation by 2π

n about
the principal Cn axis are designated A which those which are antisymmetric are
designated by B. (ii) Subscript 1 if the irreducible representation is symmetric
with respect to rotation about a C2 axis perpendicular to the Cn axis and 2 if
it is antisymmetric. (iii) The prime superscript and double prime are given to
irreducible representations which are respectively symmetric and antisymmetric
with respect to σh. (iv) Groups which have center of inversion, the subscript
g (gerade) and u (ungerade) are given to irreducible that are symmetric and
antisymmetric with respect to inversion.

Example 1: Group D6h; Symmetry operation:C2, Mulliken symbol:E2g: Since
the symmetry operation corresponds to a rotation of 180 in the plane of the
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(Referred in Chapter 4)

sheets, θ = 180◦ and the rotation matrix becomes,

(
−1 0

0 −1

)
The basis for E2g

is written as {x2 − y2, xy}, therefore another coordinate would transform as

(
x
′

y
′

)
=

(
−1 0

0 −1

)(
x

y

)
(C.1)

which yields,

x
′
= −x & y

′
= −y

∴ x
′2 − y′2 = (−x)2 − (−y)2 = x2 − y2

& x
′
y
′
= (−x)(−y) = xy (C.2)

Eq. C.2 can be written as,(
x
′ − y′

x
′
y
′

)
=

(
1 0

0 1

)(
x2 − y2

xy

)
(C.3)

The character is defined as the traces of the box diagonal matrices. Therefore,
the character is 2.

Example 2: Group D6h; Symmetry operation:C2, Mulliken symbol:E2u: The
basis is given by {x, y}. With θ = 180◦, the transformation matrix corresponding
to {x, y} ⇒ {x′, y′} can be easily seen to be Eq. C. The trace is therefore -2.

Example 3: Group D3h; Symmetry operation:C3, Mulliken symbol:E
′
: The

basis is given by {x, y}. With θ = 120◦, the transformation matrix corresponding
to {x, y} ⇒ {x′, y′} can shown to be,(

x
′

y
′

)
=

(
−1

2 −
√

3
2√

3
2 −1

2

)(
x

y

)
(C.4)

The character is therefore -1.
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